Spaces:
Runtime error
Runtime error
Pierre Chapuis
commited on
simplify enhancer code
Browse files- src/enhancer.py +6 -69
src/enhancer.py
CHANGED
|
@@ -4,7 +4,6 @@ from typing import Any
|
|
| 4 |
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
-
from refiners.foundationals.clip.concepts import ConceptExtender
|
| 8 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
| 9 |
MultiUpscaler,
|
| 10 |
UpscalerCheckpoints,
|
|
@@ -15,7 +14,7 @@ from esrgan_model import UpscalerESRGAN
|
|
| 15 |
|
| 16 |
@dataclass(kw_only=True)
|
| 17 |
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
| 18 |
-
esrgan: Path
|
| 19 |
|
| 20 |
|
| 21 |
class ESRGANUpscaler(MultiUpscaler):
|
|
@@ -26,7 +25,8 @@ class ESRGANUpscaler(MultiUpscaler):
|
|
| 26 |
dtype: torch.dtype,
|
| 27 |
) -> None:
|
| 28 |
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
| 29 |
-
self.esrgan =
|
|
|
|
| 30 |
|
| 31 |
def to(self, device: torch.device, dtype: torch.dtype):
|
| 32 |
self.esrgan.to(device=device, dtype=dtype)
|
|
@@ -34,69 +34,6 @@ class ESRGANUpscaler(MultiUpscaler):
|
|
| 34 |
self.device = device
|
| 35 |
self.dtype = dtype
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
return UpscalerESRGAN(path, device=self.device, dtype=self.dtype)
|
| 41 |
-
|
| 42 |
-
def load_negative_embedding(self, path: Path | None, key: str | None) -> str:
|
| 43 |
-
if path is None:
|
| 44 |
-
return ""
|
| 45 |
-
|
| 46 |
-
embeddings: torch.Tensor | dict[str, Any] = torch.load( # type: ignore
|
| 47 |
-
path, weights_only=True, map_location=self.device
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
if isinstance(embeddings, dict):
|
| 51 |
-
assert (
|
| 52 |
-
key is not None
|
| 53 |
-
), "Key must be provided to access the negative embedding."
|
| 54 |
-
key_sequence = key.split(".")
|
| 55 |
-
for key in key_sequence:
|
| 56 |
-
assert (
|
| 57 |
-
key in embeddings
|
| 58 |
-
), f"Key {key} not found in the negative embedding dictionary. Available keys: {list(embeddings.keys())}"
|
| 59 |
-
embeddings = embeddings[key]
|
| 60 |
-
|
| 61 |
-
assert isinstance(
|
| 62 |
-
embeddings, torch.Tensor
|
| 63 |
-
), f"The negative embedding must be a tensor, found {type(embeddings)}."
|
| 64 |
-
assert (
|
| 65 |
-
embeddings.ndim == 2
|
| 66 |
-
), f"The negative embedding must be a 2D tensor, found {embeddings.ndim}D tensor."
|
| 67 |
-
|
| 68 |
-
extender = ConceptExtender(self.sd.clip_text_encoder)
|
| 69 |
-
negative_embedding_token = ", "
|
| 70 |
-
for i, embedding in enumerate(embeddings):
|
| 71 |
-
embedding = embedding.to(device=self.device, dtype=self.dtype)
|
| 72 |
-
extender.add_concept(token=f"<{i}>", embedding=embedding)
|
| 73 |
-
negative_embedding_token += f"<{i}> "
|
| 74 |
-
extender.inject()
|
| 75 |
-
|
| 76 |
-
return negative_embedding_token
|
| 77 |
-
|
| 78 |
-
def pre_upscale(
|
| 79 |
-
self,
|
| 80 |
-
image: Image.Image,
|
| 81 |
-
upscale_factor: float,
|
| 82 |
-
use_esrgan: bool = True,
|
| 83 |
-
use_esrgan_tiling: bool = True,
|
| 84 |
-
**_: Any,
|
| 85 |
-
) -> Image.Image:
|
| 86 |
-
if self.esrgan is None or not use_esrgan:
|
| 87 |
-
return super().pre_upscale(image=image, upscale_factor=upscale_factor)
|
| 88 |
-
|
| 89 |
-
width, height = image.size
|
| 90 |
-
|
| 91 |
-
if use_esrgan_tiling:
|
| 92 |
-
image = self.esrgan.upscale_with_tiling(image)
|
| 93 |
-
else:
|
| 94 |
-
image = self.esrgan.upscale_without_tiling(image)
|
| 95 |
-
|
| 96 |
-
return image.resize(
|
| 97 |
-
size=(
|
| 98 |
-
int(width * upscale_factor),
|
| 99 |
-
int(height * upscale_factor),
|
| 100 |
-
),
|
| 101 |
-
resample=Image.LANCZOS,
|
| 102 |
-
)
|
|
|
|
| 4 |
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
| 8 |
MultiUpscaler,
|
| 9 |
UpscalerCheckpoints,
|
|
|
|
| 14 |
|
| 15 |
@dataclass(kw_only=True)
|
| 16 |
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
| 17 |
+
esrgan: Path
|
| 18 |
|
| 19 |
|
| 20 |
class ESRGANUpscaler(MultiUpscaler):
|
|
|
|
| 25 |
dtype: torch.dtype,
|
| 26 |
) -> None:
|
| 27 |
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
| 28 |
+
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
| 29 |
+
self.esrgan.to(device=device, dtype=dtype)
|
| 30 |
|
| 31 |
def to(self, device: torch.device, dtype: torch.dtype):
|
| 32 |
self.esrgan.to(device=device, dtype=dtype)
|
|
|
|
| 34 |
self.device = device
|
| 35 |
self.dtype = dtype
|
| 36 |
|
| 37 |
+
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
|
| 38 |
+
image = self.esrgan.upscale_with_tiling(image)
|
| 39 |
+
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|