Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +61 -62
tasks/text.py
CHANGED
@@ -13,20 +13,28 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
13 |
|
14 |
router = APIRouter()
|
15 |
|
16 |
-
|
17 |
-
DESCRIPTIONS = {
|
18 |
-
"distilbert_frugalai": "distilbert tuned on frugal ai data",
|
19 |
-
"modernbert_frugalai": "distilbert tuned on frugal ai data",
|
20 |
-
"mpnet_frugalai": "mpnet tuned on frugal ai data",
|
21 |
-
|
22 |
-
}
|
23 |
ROUTE = "/text"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
class TextDataset(Dataset):
|
27 |
-
def __init__(self, texts, tokenizer, max_length=
|
28 |
self.texts = texts
|
29 |
-
self.
|
30 |
texts,
|
31 |
truncation=True,
|
32 |
padding=True,
|
@@ -35,43 +43,38 @@ class TextDataset(Dataset):
|
|
35 |
)
|
36 |
|
37 |
def __getitem__(self, idx):
|
38 |
-
item = {key: val[idx] for key, val in self.
|
39 |
return item
|
40 |
|
41 |
def __len__(self) -> int:
|
42 |
return len(self.texts)
|
|
|
43 |
|
44 |
|
45 |
-
def
|
46 |
-
|
47 |
-
# predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
48 |
-
|
49 |
-
# My favorite baseline is the most common class.
|
50 |
-
predictions = [0] * dataset_length
|
51 |
-
|
52 |
-
return predictions
|
53 |
-
|
54 |
-
|
55 |
-
def bert_model(test_dataset: dict, model_type: str):
|
56 |
texts = test_dataset["quote"]
|
57 |
|
58 |
-
model_repo = f"evgeniiarazum/{
|
59 |
-
|
60 |
-
config = AutoConfig.from_pretrained(model_repo)
|
61 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
63 |
|
64 |
-
if
|
65 |
-
|
66 |
else:
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
model = model.to(device)
|
|
|
|
|
70 |
dataset = TextDataset(texts, tokenizer=tokenizer)
|
71 |
-
dataloader = DataLoader(dataset, batch_size=
|
|
|
72 |
model.eval()
|
73 |
with torch.no_grad():
|
74 |
-
print("Starting model run.")
|
75 |
predictions = np.array([])
|
76 |
for batch in dataloader:
|
77 |
test_input_ids = batch["input_ids"].to(device)
|
@@ -79,21 +82,18 @@ def bert_model(test_dataset: dict, model_type: str):
|
|
79 |
outputs = model(test_input_ids, test_attention_mask)
|
80 |
p = torch.argmax(outputs.logits, dim=1)
|
81 |
predictions = np.append(predictions, p.cpu().numpy())
|
82 |
-
|
83 |
-
|
|
|
84 |
return predictions
|
85 |
|
86 |
|
87 |
@router.post(ROUTE, tags=["Text Task"])
|
88 |
-
async def evaluate_text(
|
89 |
-
|
90 |
-
model_type: str = MODEL_TYPE,
|
91 |
-
# This should be an API query parameter, but it looks like the submission repo
|
92 |
-
# https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
|
93 |
-
# is built in a way to not accept any other endpoints or parameters.
|
94 |
-
):
|
95 |
"""
|
96 |
Evaluate text classification for climate disinformation detection.
|
|
|
97 |
Current Model: Random Baseline
|
98 |
- Makes random predictions from the label space (0-7)
|
99 |
- Used as a baseline for comparison
|
@@ -110,7 +110,7 @@ async def evaluate_text(
|
|
110 |
"4_solutions_harmful_unnecessary": 4,
|
111 |
"5_science_unreliable": 5,
|
112 |
"6_proponents_biased": 6,
|
113 |
-
"7_fossil_fuels_needed": 7
|
114 |
}
|
115 |
|
116 |
# Load and prepare the dataset
|
@@ -120,44 +120,43 @@ async def evaluate_text(
|
|
120 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
121 |
|
122 |
# Split dataset
|
123 |
-
train_test = dataset["train"].train_test_split(
|
124 |
-
test_size=request.test_size, seed=request.test_seed
|
125 |
-
)
|
126 |
test_dataset = train_test["test"]
|
127 |
-
|
128 |
# Start tracking emissions
|
129 |
tracker.start()
|
130 |
tracker.start_task("inference")
|
131 |
|
132 |
-
|
133 |
# YOUR MODEL INFERENCE CODE HERE
|
134 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
135 |
-
|
136 |
-
|
|
|
137 |
true_labels = test_dataset["label"]
|
138 |
-
|
|
|
139 |
predictions = baseline_model(len(true_labels))
|
140 |
-
elif
|
141 |
-
predictions =
|
142 |
-
else:
|
143 |
-
raise ValueError(model_type)
|
144 |
|
145 |
-
|
146 |
# YOUR MODEL INFERENCE STOPS HERE
|
147 |
-
|
148 |
|
|
|
149 |
# Stop tracking emissions
|
150 |
emissions_data = tracker.stop_task()
|
151 |
-
|
152 |
# Calculate accuracy
|
153 |
accuracy = accuracy_score(true_labels, predictions)
|
154 |
-
|
155 |
# Prepare results dictionary
|
156 |
results = {
|
157 |
"username": username,
|
158 |
"space_url": space_url,
|
159 |
"submission_timestamp": datetime.now().isoformat(),
|
160 |
-
"model_description":
|
161 |
"accuracy": float(accuracy),
|
162 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
163 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
@@ -166,8 +165,8 @@ async def evaluate_text(
|
|
166 |
"dataset_config": {
|
167 |
"dataset_name": request.dataset_name,
|
168 |
"test_size": request.test_size,
|
169 |
-
"test_seed": request.test_seed
|
170 |
-
}
|
171 |
}
|
172 |
-
|
173 |
-
return results
|
|
|
13 |
|
14 |
router = APIRouter()
|
15 |
|
16 |
+
DESCRIPTION = "Random Baseline"
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
ROUTE = "/text"
|
18 |
|
19 |
+
models_descriptions = {
|
20 |
+
"baseline": "random baseline", # Baseline
|
21 |
+
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier", # Submitted
|
22 |
+
"bert_base_pruned": "Pruned BERT base model", # Submitted
|
23 |
+
'climate_bert_pruned': "Fine-tuned and pruned DistilRoBERTa pre-trained on climate texts", # Not working
|
24 |
+
"sbert_distilroberta": "Fine-tuned sentence transformer DistilRoBERTa"
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def baseline_model(dataset_length: int):
|
29 |
+
# Make random predictions (placeholder for actual model inference)
|
30 |
+
predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
31 |
+
|
32 |
+
return predictions
|
33 |
|
34 |
class TextDataset(Dataset):
|
35 |
+
def __init__(self, texts, tokenizer, max_length=512):
|
36 |
self.texts = texts
|
37 |
+
self.tokenized_texts = tokenizer(
|
38 |
texts,
|
39 |
truncation=True,
|
40 |
padding=True,
|
|
|
43 |
)
|
44 |
|
45 |
def __getitem__(self, idx):
|
46 |
+
item = {key: val[idx] for key, val in self.tokenized_texts.items()}
|
47 |
return item
|
48 |
|
49 |
def __len__(self) -> int:
|
50 |
return len(self.texts)
|
51 |
+
|
52 |
|
53 |
|
54 |
+
def bert_classifier(test_dataset: dict, model: str):
|
55 |
+
print("Starting BERT model run")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
texts = test_dataset["quote"]
|
57 |
|
58 |
+
model_repo = f"evgeniiarazum/{model}"
|
59 |
+
|
|
|
|
|
60 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
61 |
|
62 |
+
if model in ["distilbert_frugalai", "deberta_frugalai", "modernbert_frugalai", "distilroberta_frugalai"]:
|
63 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
|
64 |
else:
|
65 |
+
raise(ValueError)
|
66 |
+
|
67 |
+
# Use CUDA if available
|
68 |
+
device, _, _ = get_backend()
|
69 |
+
|
70 |
model = model.to(device)
|
71 |
+
|
72 |
+
# Prepare dataset
|
73 |
dataset = TextDataset(texts, tokenizer=tokenizer)
|
74 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
|
75 |
+
|
76 |
model.eval()
|
77 |
with torch.no_grad():
|
|
|
78 |
predictions = np.array([])
|
79 |
for batch in dataloader:
|
80 |
test_input_ids = batch["input_ids"].to(device)
|
|
|
82 |
outputs = model(test_input_ids, test_attention_mask)
|
83 |
p = torch.argmax(outputs.logits, dim=1)
|
84 |
predictions = np.append(predictions, p.cpu().numpy())
|
85 |
+
|
86 |
+
print("Finished BERT model run")
|
87 |
+
|
88 |
return predictions
|
89 |
|
90 |
|
91 |
@router.post(ROUTE, tags=["Text Task"])
|
92 |
+
async def evaluate_text(request: TextEvaluationRequest,
|
93 |
+
model: str = "distilbert_frugalai"):
|
|
|
|
|
|
|
|
|
|
|
94 |
"""
|
95 |
Evaluate text classification for climate disinformation detection.
|
96 |
+
|
97 |
Current Model: Random Baseline
|
98 |
- Makes random predictions from the label space (0-7)
|
99 |
- Used as a baseline for comparison
|
|
|
110 |
"4_solutions_harmful_unnecessary": 4,
|
111 |
"5_science_unreliable": 5,
|
112 |
"6_proponents_biased": 6,
|
113 |
+
"7_fossil_fuels_needed": 7
|
114 |
}
|
115 |
|
116 |
# Load and prepare the dataset
|
|
|
120 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
121 |
|
122 |
# Split dataset
|
123 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
|
|
|
|
124 |
test_dataset = train_test["test"]
|
125 |
+
|
126 |
# Start tracking emissions
|
127 |
tracker.start()
|
128 |
tracker.start_task("inference")
|
129 |
|
130 |
+
#--------------------------------------------------------------------------------------------
|
131 |
# YOUR MODEL INFERENCE CODE HERE
|
132 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
133 |
+
#--------------------------------------------------------------------------------------------
|
134 |
+
|
135 |
+
# Make random predictions (placeholder for actual model inference)
|
136 |
true_labels = test_dataset["label"]
|
137 |
+
|
138 |
+
if model == "baseline":
|
139 |
predictions = baseline_model(len(true_labels))
|
140 |
+
elif 'bert' in model:
|
141 |
+
predictions = bert_classifier(test_dataset, model)
|
|
|
|
|
142 |
|
143 |
+
#--------------------------------------------------------------------------------------------
|
144 |
# YOUR MODEL INFERENCE STOPS HERE
|
145 |
+
#--------------------------------------------------------------------------------------------
|
146 |
|
147 |
+
|
148 |
# Stop tracking emissions
|
149 |
emissions_data = tracker.stop_task()
|
150 |
+
|
151 |
# Calculate accuracy
|
152 |
accuracy = accuracy_score(true_labels, predictions)
|
153 |
+
|
154 |
# Prepare results dictionary
|
155 |
results = {
|
156 |
"username": username,
|
157 |
"space_url": space_url,
|
158 |
"submission_timestamp": datetime.now().isoformat(),
|
159 |
+
"model_description": models_descriptions[model],
|
160 |
"accuracy": float(accuracy),
|
161 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
162 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
|
|
165 |
"dataset_config": {
|
166 |
"dataset_name": request.dataset_name,
|
167 |
"test_size": request.test_size,
|
168 |
+
"test_seed": request.test_seed
|
169 |
+
}
|
170 |
}
|
171 |
+
|
172 |
+
return results
|