Spaces:
Sleeping
Sleeping
File size: 5,963 Bytes
3824263 4d6e8c2 3824263 4d6e8c2 3824263 4d6e8c2 ccbdb0e 3824263 a311ff6 3824263 1c33274 70f5f26 3824263 29aa520 3824263 4d6e8c2 70f5f26 4d6e8c2 3824263 4d6e8c2 3824263 4d6e8c2 70f5f26 3824263 70f5f26 3824263 4d6e8c2 3824263 09a0f40 3824263 70f5f26 3824263 70f5f26 3824263 70f5f26 4d6e8c2 3824263 4d6e8c2 3824263 4d6e8c2 3824263 4d6e8c2 1c33274 4d6e8c2 3824263 4d6e8c2 3824263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from fastapi import APIRouter, Query
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import random
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
MODEL_TYPE = "distilbert_frugalai"
DESCRIPTIONS = {
"distilbert_frugalai": "distilbert tuned on frugal ai data",
"modernbert_frugalai": "distilbert tuned on frugal ai data"
}
ROUTE = "/text"
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=256):
self.texts = texts
self.encodings = tokenizer(
texts,
truncation=True,
padding=True,
max_length=max_length,
return_tensors="pt",
)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.encodings.items()}
return item
def __len__(self) -> int:
return len(self.texts)
def baseline_model(dataset_length: int):
# Make random predictions (placeholder for actual model inference)
# predictions = [random.randint(0, 7) for _ in range(dataset_length)]
# My favorite baseline is the most common class.
predictions = [0] * dataset_length
return predictions
def bert_model(test_dataset: dict, model_type: str):
print("Starting my code block.")
texts = test_dataset["quote"]
model_repo = f"evgeniiarazum/{MODEL_TYPE}"
print(f"Loading from model_repo: {model_repo}")
config = AutoConfig.from_pretrained(model_repo)
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
tokenizer = AutoTokenizer.from_pretrained(model_repo)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("Using device:", device)
model = model.to(device)
dataset = TextDataset(texts, tokenizer=tokenizer)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
model.eval()
with torch.no_grad():
print("Starting model run.")
predictions = np.array([])
for batch in dataloader:
test_input_ids = batch["input_ids"].to(device)
test_attention_mask = batch["attention_mask"].to(device)
outputs = model(test_input_ids, test_attention_mask)
p = torch.argmax(outputs.logits, dim=1)
predictions = np.append(predictions, p.cpu().numpy())
print("End of model run.")
print("End of my code block.")
return predictions
@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
request: TextEvaluationRequest,
model_type: str = MODEL_TYPE,
# This should be an API query parameter, but it looks like the submission repo
# https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
# is built in a way to not accept any other endpoints or parameters.
):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7,
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(
test_size=request.test_size, seed=request.test_seed
)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
# --------------------------------------------------------------------------------------------
true_labels = test_dataset["label"]
if model_type == "baseline":
predictions = baseline_model(len(true_labels))
elif model_type in ["distilbert_frugalai", "modernbert_frugalai"]:
predictions = bert_model(test_dataset, model_type)
else:
raise ValueError(model_type)
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
# --------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTIONS[model_type],
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed,
},
}
return results |