File size: 5,963 Bytes
3824263
4d6e8c2
 
 
3824263
4d6e8c2
3824263
 
 
4d6e8c2
 
 
 
 
 
ccbdb0e
3824263
a311ff6
 
3824263
1c33274
70f5f26
3824263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29aa520
3824263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
3824263
4d6e8c2
 
 
 
 
 
 
 
 
3824263
 
 
 
 
4d6e8c2
 
 
70f5f26
3824263
70f5f26
 
3824263
 
4d6e8c2
3824263
 
09a0f40
3824263
 
 
70f5f26
3824263
70f5f26
3824263
70f5f26
4d6e8c2
 
3824263
4d6e8c2
 
3824263
4d6e8c2
 
 
 
 
3824263
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
3824263
 
4d6e8c2
3824263
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from fastapi import APIRouter, Query
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import random
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

MODEL_TYPE = "distilbert_frugalai"
DESCRIPTIONS = {
    "distilbert_frugalai": "distilbert tuned on frugal ai data",
    "modernbert_frugalai": "distilbert tuned on frugal ai data"
}
ROUTE = "/text"


class TextDataset(Dataset):
    def __init__(self, texts, tokenizer, max_length=256):
        self.texts = texts
        self.encodings = tokenizer(
            texts,
            truncation=True,
            padding=True,
            max_length=max_length,
            return_tensors="pt",
        )

    def __getitem__(self, idx):
        item = {key: val[idx] for key, val in self.encodings.items()}
        return item

    def __len__(self) -> int:
        return len(self.texts)


def baseline_model(dataset_length: int):
    # Make random predictions (placeholder for actual model inference)
    # predictions = [random.randint(0, 7) for _ in range(dataset_length)]

    # My favorite baseline is the most common class.
    predictions = [0] * dataset_length

    return predictions


def bert_model(test_dataset: dict, model_type: str):
    print("Starting my code block.")
    texts = test_dataset["quote"]

    model_repo = f"evgeniiarazum/{MODEL_TYPE}"
    print(f"Loading from model_repo: {model_repo}")
    config = AutoConfig.from_pretrained(model_repo)
    model = AutoModelForSequenceClassification.from_pretrained(model_repo)
    tokenizer = AutoTokenizer.from_pretrained(model_repo)

    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    print("Using device:", device)
    model = model.to(device)
    dataset = TextDataset(texts, tokenizer=tokenizer)
    dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
    model.eval()
    with torch.no_grad():
        print("Starting model run.")
        predictions = np.array([])
        for batch in dataloader:
            test_input_ids = batch["input_ids"].to(device)
            test_attention_mask = batch["attention_mask"].to(device)
            outputs = model(test_input_ids, test_attention_mask)
            p = torch.argmax(outputs.logits, dim=1)
            predictions = np.append(predictions, p.cpu().numpy())
        print("End of model run.")

    print("End of my code block.")
    return predictions


@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
    request: TextEvaluationRequest,
    model_type: str = MODEL_TYPE,
    # This should be an API query parameter, but it looks like the submission repo
    # https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
    # is built in a way to not accept any other endpoints or parameters.
):
    """
    Evaluate text classification for climate disinformation detection.
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7,
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(
        test_size=request.test_size, seed=request.test_seed
    )
    test_dataset = train_test["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    # --------------------------------------------------------------------------------------------

    true_labels = test_dataset["label"]
    if model_type == "baseline":
        predictions = baseline_model(len(true_labels))
    elif model_type in ["distilbert_frugalai", "modernbert_frugalai"]:
        predictions = bert_model(test_dataset, model_type)
    else:
        raise ValueError(model_type)

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    # --------------------------------------------------------------------------------------------

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTIONS[model_type],
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed,
        },
    }

    return results