Everton Aleixo
commited on
Commit
·
efac2a4
1
Parent(s):
6f6baeb
Debuging.
Browse files
app.py
CHANGED
|
@@ -4,9 +4,22 @@ import torch
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
|
|
| 7 |
|
| 8 |
from gradio_client import serializing
|
| 9 |
print('kesy', serializing.COMPONENT_MAPPING.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
# load speech translation checkpoint
|
|
@@ -24,6 +37,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
| 24 |
|
| 25 |
def translate(audio):
|
| 26 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"portuguese"})
|
|
|
|
| 27 |
return outputs["text"]
|
| 28 |
|
| 29 |
|
|
@@ -35,6 +49,7 @@ def synthesise(text):
|
|
| 35 |
|
| 36 |
def speech_to_speech_translation(audio):
|
| 37 |
translated_text = translate(audio)
|
|
|
|
| 38 |
synthesised_speech = synthesise(translated_text)
|
| 39 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 40 |
return 16000, synthesised_speech
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
| 7 |
+
from huggingface_hub import HfFolder
|
| 8 |
+
import requests
|
| 9 |
|
| 10 |
from gradio_client import serializing
|
| 11 |
print('kesy', serializing.COMPONENT_MAPPING.keys())
|
| 12 |
+
print('HF', HfFolder().get_token())
|
| 13 |
+
|
| 14 |
+
def query(text, model_id="tiiuae/falcon-7b-instruct"):
|
| 15 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 16 |
+
headers = {"Authorization": f"Bearer {HfFolder().get_token()}"}
|
| 17 |
+
payload = {"inputs": text}
|
| 18 |
+
|
| 19 |
+
print(f"Querying...: {text}")
|
| 20 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
| 21 |
+
return response.json()[0]["generated_text"][len(text) + 1 :]
|
| 22 |
+
|
| 23 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
# load speech translation checkpoint
|
|
|
|
| 37 |
|
| 38 |
def translate(audio):
|
| 39 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"portuguese"})
|
| 40 |
+
print('outputs', outputs)
|
| 41 |
return outputs["text"]
|
| 42 |
|
| 43 |
|
|
|
|
| 49 |
|
| 50 |
def speech_to_speech_translation(audio):
|
| 51 |
translated_text = translate(audio)
|
| 52 |
+
print('translated', translated_text)
|
| 53 |
synthesised_speech = synthesise(translated_text)
|
| 54 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 55 |
return 16000, synthesised_speech
|