File size: 23,576 Bytes
2aa6546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re

# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")

# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)

bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)

# Load Spanish models and tokenizers
confli_model_spanish_name = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish_name)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish_name)

beto_model_spanish_name = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish_name)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish_name)

# Load the additional Spanish models
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)

beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)

# Load specified ConfliBERT Arabic models
confli_model_arabic_1_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-MLQA'
confli_model_arabic_1 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_1_name)
confli_tokenizer_arabic_1 = AutoTokenizer.from_pretrained(confli_model_arabic_1_name)

confli_model_arabic_2_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-XQUAD'
confli_model_arabic_2 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_2_name)
confli_tokenizer_arabic_2 = AutoTokenizer.from_pretrained(confli_model_arabic_2_name)

confli_model_arabic_3_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-ARCD'
confli_model_arabic_3 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_3_name)
confli_tokenizer_arabic_3 = AutoTokenizer.from_pretrained(confli_model_arabic_3_name)

# Load specified BERT Arabic models (AraBERTv2)
bert_model_arabic_1_name = 'salsarra/Bert-Base-Arabertv2-QA-MLQA'
bert_qa_model_arabic_1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_1_name)
bert_qa_tokenizer_arabic_1 = AutoTokenizer.from_pretrained(bert_model_arabic_1_name)

bert_model_arabic_2_name = 'salsarra/Bert-Base-Arabertv2-QA-XQUAD'
bert_qa_model_arabic_2 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_2_name)
bert_qa_tokenizer_arabic_2 = AutoTokenizer.from_pretrained(bert_model_arabic_2_name)

bert_model_arabic_3_name = 'salsarra/Bert-Base-Arabertv2-QA-ARCD'
bert_qa_model_arabic_3 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_3_name)
bert_qa_tokenizer_arabic_3 = AutoTokenizer.from_pretrained(bert_model_arabic_3_name)



# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
    error_message = str(e)
    pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
    match = pattern.search(error_message)
    if match:
        number_1, number_2 = match.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
    match_qa = pattern_qa.search(error_message)
    if match_qa:
        number_1, number_2 = match_qa.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"

# Define question_answering_v1 for ConfliBERT English with truncation=True
def question_answering_v1(context, question):
    try:
        inputs = qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
        outputs = qa_model_v1(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = qa_tokenizer_v1.convert_tokens_to_string(
            qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define bert_question_answering_v1 for BERT English with truncation=True
def bert_question_answering_v1(context, question):
    try:
        inputs = bert_qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
        outputs = bert_qa_model_v1(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = bert_qa_tokenizer_v1.convert_tokens_to_string(
            bert_qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-NewsQA
def question_answering_spanish(context, question):
    try:
        inputs = confli_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
        outputs = confli_model_spanish(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = confli_tokenizer_spanish.convert_tokens_to_string(
            confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define beto_question_answering_spanish for Beto-Spanish-Cased-NewsQA
def beto_question_answering_spanish(context, question):
    try:
        inputs = beto_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
        outputs = beto_model_spanish(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = beto_tokenizer_spanish.convert_tokens_to_string(
            beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define confli_sqac_question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-SQAC
def confli_sqac_question_answering_spanish(context, question):
    inputs = confli_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
    outputs = confli_sqac_model_spanish_qa(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = confli_sqac_tokenizer_spanish.convert_tokens_to_string(
        confli_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# Define beto_sqac_question_answering_spanish for Beto-Spanish-Cased-SQAC
def beto_sqac_question_answering_spanish(context, question):
    inputs = beto_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
    outputs = beto_sqac_model_spanish_qa(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(
        beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# ConfliBERT Arabic Model 1
def question_answering_confli_arabic_1(context, question):
    try:
        inputs = confli_tokenizer_arabic_1(question, context, return_tensors='tf', truncation=True)
        outputs = confli_model_arabic_1(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = confli_tokenizer_arabic_1.convert_tokens_to_string(
            confli_tokenizer_arabic_1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Add functions for other ConfliBERT and BERT models similarly

def question_answering_confli_arabic_2(context, question):
    inputs = confli_tokenizer_arabic_2(question, context, return_tensors='tf', truncation=True)
    outputs = confli_model_arabic_2(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = confli_tokenizer_arabic_2.convert_tokens_to_string(
        confli_tokenizer_arabic_2.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

def question_answering_confli_arabic_3(context, question):
    inputs = confli_tokenizer_arabic_3(question, context, return_tensors='tf', truncation=True)
    outputs = confli_model_arabic_3(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = confli_tokenizer_arabic_3.convert_tokens_to_string(
        confli_tokenizer_arabic_3.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# Similarly, for BERT models
def question_answering_bert_arabic_1(context, question):
    inputs = bert_qa_tokenizer_arabic_1(question, context, return_tensors='tf', truncation=True)
    outputs = bert_qa_model_arabic_1(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = bert_qa_tokenizer_arabic_1.convert_tokens_to_string(
        bert_qa_tokenizer_arabic_1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# BERT Arabic Model 2 (XQUAD)
def question_answering_bert_arabic_2(context, question):
    try:
        inputs = bert_qa_tokenizer_arabic_2(question, context, return_tensors='tf', truncation=True)
        outputs = bert_qa_model_arabic_2(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = bert_qa_tokenizer_arabic_2.convert_tokens_to_string(
            bert_qa_tokenizer_arabic_2.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# BERT Arabic Model 3 (ARCD)
def question_answering_bert_arabic_3(context, question):
    try:
        inputs = bert_qa_tokenizer_arabic_3(question, context, return_tensors='tf', truncation=True)
        outputs = bert_qa_model_arabic_3(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = bert_qa_tokenizer_arabic_3.convert_tokens_to_string(
            bert_qa_tokenizer_arabic_3.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)



# Define a function to get ChatGPT's answer in English using the latest OpenAI API
def chatgpt_question_answering(context, question):
    messages = [
        {"role": "system", "content": "You are a helpful assistant. Only answer based on the provided context. Do not use any external knowledge."},
        {"role": "user", "content": f"Context: {context}\nQuestion: {question}\nAnswer:"}
    ]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        max_tokens=500
    )
    return response['choices'][0]['message']['content'].strip()

# Define a function to get ChatGPT's answer in Spanish using the latest OpenAI API
def chatgpt_question_answering_spanish(context, question):
    messages = [
        {"role": "system", "content": "You are a helpful assistant that responds in Spanish. Only answer based on the provided context. Do not use any external knowledge."},
        {"role": "user", "content": f"Contexto: {context}\nPregunta: {question}\nRespuesta:"}
    ]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        max_tokens=500
    )
    return response['choices'][0]['message']['content'].strip()

# Define a function to get ChatGPT's answer in Arabic using the latest OpenAI API
def chatgpt_question_answering_arabic(context, question):
    messages = [
        {"role": "system", "content": "أنت مساعد ذكي ومفيد. أجب فقط بناءً على النص المُعطى في السياق. لا تستخدم أي معرفة خارجية."},
        {"role": "user", "content": f"السياق: {context}\nالسؤال: {question}\nالإجابة:"}
    ]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        max_tokens=500
    )
    return response['choices'][0]['message']['content'].strip()


# Main comparison function with language selection
def compare_question_answering(language, context, question):
    if language == "English":
        confli_answer_v1 = question_answering_v1(context, question)
        bert_answer_v1 = bert_question_answering_v1(context, question)
        chatgpt_answer = chatgpt_question_answering(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT English:</strong><br><span style='font-weight: bold;'>{confli_answer_v1}</span></div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>BERT:</strong><br><span style='font-weight: bold;'>{bert_answer_v1}</span>
        </div><br>
        <div>
            <strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer}</span>
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>ConfliBERT English (Cont-Cased-SQuAD-v1)</a><br>
            <a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>BERT (Base-Cased-SQuAD-v1)</a><br>
            <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
        </div>
        """
    elif language == "Spanish":
        confli_answer_spanish = question_answering_spanish(context, question)
        beto_answer_spanish = beto_question_answering_spanish(context, question)
        confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
        beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
        chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT Spanish:</strong><br><span style='font-weight: bold;'>{confli_answer_spanish}</span></div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>BERT Spanish (BETO):</strong><br><span style='font-weight: bold;'>{beto_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT Spanish:</strong><br><span style='font-weight: bold;'>{confli_sqac_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>BERT Spanish (BETO):</strong><br><span style='font-weight: bold;'>{beto_sqac_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer_spanish}</span>
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>ConfliBERT Spanish (Beto-Cased-NewsQA)</a><br>
            <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>BERT Spanish (BETO) (Beto-Spanish-Cased-NewsQA)</a><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>ConfliBERT Spanish (Beto-Cased-SQAC)</a><br>
            <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>BERT Spanish (BETO) (Beto-Cased-SQAC)</a><br>
            <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
        </div>
        """
    elif language == "Arabic":
        confli_answer_arabic_1 = question_answering_confli_arabic_1(context, question)
        bert_answer_arabic_1 = question_answering_bert_arabic_1(context, question)
        confli_answer_arabic_2 = question_answering_confli_arabic_2(context, question)
        bert_answer_arabic_2 = question_answering_bert_arabic_2(context, question)
        confli_answer_arabic_3 = question_answering_confli_arabic_3(context, question)
        bert_answer_arabic_3 = question_answering_bert_arabic_3(context, question)
        chatgpt_answer_arabic = chatgpt_question_answering_arabic(context, question)

        return f"""
        <div dir="rtl" style="text-align: right;">
            <h2 style='color: #2e8b57; font-weight: bold;'>الإجابات:</h2>
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (MLQA):</strong><br>
            {confli_answer_arabic_1}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: orange; font-weight: bold;'>BERT Arabic (MLQA):</strong><br>
            {bert_answer_arabic_1}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (XQUAD):</strong><br>
            {confli_answer_arabic_2}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: orange; font-weight: bold;'>BERT Arabic (XQUAD):</strong><br>
            {bert_answer_arabic_2}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (ARCD):</strong><br>
            {confli_answer_arabic_3}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: orange; font-weight: bold;'>BERT Arabic (ARCD):</strong><br>
            {bert_answer_arabic_3}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br>
            {chatgpt_answer_arabic}
        </div><br>
        <div dir="rtl" style="text-align: right;">
            <strong>Model Information:</strong><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-MLQA' target='_blank'>ConfliBERT Arabic (MLQA)</a><br>
            <a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-MLQA' target='_blank'>BERT Arabic (MLQA)</a><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-XQUAD' target='_blank'>ConfliBERT Arabic (XQUAD)</a><br>
            <a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-XQUAD' target='_blank'>BERT Arabic (XQUAD)</a><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-ARCD' target='_blank'>ConfliBERT Arabic (ARCD)</a><br>
            <a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-ARCD' target='_blank'>BERT Arabic (ARCD)</a><br>
            <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br>
        </div>
        """



# Gradio interface setup
with gr.Blocks(css="""
    body {
        background-color: #f0f8ff;
        font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    }
    h1, h1 a {
        color: #2e8b57;
        text-align: center;
        font-size: 2em;
        text-decoration: none;
    }
    h1 a:hover {
        color: #ff8c00;
    }
    h2 {
        color: #ff8c00;
        text-align: center;
        font-size: 1.5em;
    }
""") as demo:
    
    gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
    gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
    
    language = gr.Dropdown(choices=["English", "Spanish", "Arabic"], label="Select Language")
    context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
    question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
    output = gr.HTML(label="Output")
    
    with gr.Row():
        clear_btn = gr.Button("Clear")
        submit_btn = gr.Button("Submit")
    
    submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
    clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
    
    gr.Markdown("""
        <div style="text-align: center; margin-top: 20px;">
            Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
        </div>
    """)

demo.launch(share=True)