Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import skimage | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import numpy as np | |
from collections import OrderedDict | |
import torch | |
from imagebind import data | |
from imagebind.models import imagebind_model | |
from imagebind.models.imagebind_model import ModalityType | |
import torch.nn as nn | |
device = "cpu" #"cuda:0" if torch.cuda.is_available() else "cpu" | |
model = imagebind_model.imagebind_huge(pretrained=True) | |
model.eval() | |
model.to(device) | |
# def image_text_zeroshot(image, text_list): | |
# image_paths = [image] | |
# labels = [label.strip(" ") for label in text_list.strip(" ").split("|")] | |
# inputs = { | |
# ModalityType.TEXT: data.load_and_transform_text(labels, device), | |
# ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device), | |
# } | |
# with torch.no_grad(): | |
# embeddings = model(inputs) | |
# scores = ( | |
# torch.softmax( | |
# embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1 | |
# ) | |
# .squeeze(0) | |
# .tolist() | |
# ) | |
# score_dict = {label: score for label, score in zip(labels, scores)} | |
# return score_dict | |
# def main(): | |
# inputs = [ | |
# gr.inputs.Textbox(lines=1, label="texts"), | |
# gr.inputs.Image(type="filepath", label="Output image") | |
# ] | |
# iface = gr.Interface( | |
# image_text_zeroshot(image, text_list), | |
# inputs, | |
# "label", | |
# description="""...""", | |
# title="ImageBind", | |
# ) | |
# iface.launch() | |
def image_classifier(inp): | |
return {'cat': 0.3, 'dog': 0.7} | |
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label") | |
demo.launch() | |