Spaces:
Sleeping
Sleeping
initialize
Browse files- Dockerfile +14 -0
- app.py +143 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
WORKDIR /code
|
7 |
+
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
CMD ["chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chains import (
|
8 |
+
ConversationalRetrievalChain,
|
9 |
+
)
|
10 |
+
from langchain.document_loaders import PyPDFLoader, TextLoader
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.prompts.chat import (
|
13 |
+
ChatPromptTemplate,
|
14 |
+
SystemMessagePromptTemplate,
|
15 |
+
HumanMessagePromptTemplate,
|
16 |
+
)
|
17 |
+
from langchain.docstore.document import Document
|
18 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
19 |
+
from chainlit.types import AskFileResponse
|
20 |
+
|
21 |
+
import chainlit as cl
|
22 |
+
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
24 |
+
|
25 |
+
system_template = """Use the following pieces of context to answer the users question.
|
26 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
27 |
+
ALWAYS return a "SOURCES" part in your answer.
|
28 |
+
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
29 |
+
|
30 |
+
And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well.
|
31 |
+
|
32 |
+
Example of your response should be:
|
33 |
+
|
34 |
+
The answer is foo
|
35 |
+
SOURCES: xyz
|
36 |
+
|
37 |
+
|
38 |
+
Begin!
|
39 |
+
----------------
|
40 |
+
{summaries}"""
|
41 |
+
messages = [
|
42 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
43 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
44 |
+
]
|
45 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
46 |
+
chain_type_kwargs = {"prompt": prompt}
|
47 |
+
|
48 |
+
welcome_message = """Welcome to the Chainlit PDF QA demo! To get started:
|
49 |
+
1. Upload a PDF or text file
|
50 |
+
2. Ask a question about the file
|
51 |
+
"""
|
52 |
+
|
53 |
+
def process_file(file: AskFileResponse):
|
54 |
+
pypdf_loader = PyPDFLoader(file.path)
|
55 |
+
texts = pypdf_loader.load_and_split()
|
56 |
+
texts = [text.page_content for text in texts]
|
57 |
+
return texts
|
58 |
+
|
59 |
+
@cl.on_chat_start
|
60 |
+
async def on_chat_start():
|
61 |
+
files = None
|
62 |
+
|
63 |
+
# Wait for the user to upload a file
|
64 |
+
while files == None:
|
65 |
+
files = await cl.AskFileMessage(
|
66 |
+
content = welcome_message,
|
67 |
+
accept=["application/pdf"],
|
68 |
+
max_size_mb=20,
|
69 |
+
timeout=180,
|
70 |
+
).send()
|
71 |
+
|
72 |
+
file = files[0]
|
73 |
+
|
74 |
+
msg = cl.Message(
|
75 |
+
content=f"Processing `{file.name}`...", disable_feedback=True
|
76 |
+
)
|
77 |
+
await msg.send()
|
78 |
+
|
79 |
+
# load the file
|
80 |
+
texts = process_file(file)
|
81 |
+
|
82 |
+
# print(texts[0])
|
83 |
+
|
84 |
+
# Create a metadata for each chunk
|
85 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
86 |
+
|
87 |
+
# Create a Chroma vector store
|
88 |
+
embeddings = OpenAIEmbeddings()
|
89 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
90 |
+
texts, embeddings, metadatas=metadatas
|
91 |
+
)
|
92 |
+
|
93 |
+
message_history = ChatMessageHistory()
|
94 |
+
|
95 |
+
memory = ConversationBufferMemory(
|
96 |
+
memory_key="chat_history",
|
97 |
+
output_key="answer",
|
98 |
+
chat_memory=message_history,
|
99 |
+
return_messages=True,
|
100 |
+
)
|
101 |
+
|
102 |
+
# Create a chain that uses the Chroma vector store
|
103 |
+
chain = ConversationalRetrievalChain.from_llm(
|
104 |
+
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
105 |
+
chain_type="stuff",
|
106 |
+
retriever=docsearch.as_retriever(),
|
107 |
+
memory=memory,
|
108 |
+
return_source_documents=True,
|
109 |
+
)
|
110 |
+
|
111 |
+
# Let the user know that the system is ready
|
112 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
113 |
+
await msg.update()
|
114 |
+
|
115 |
+
cl.user_session.set("chain", chain)
|
116 |
+
|
117 |
+
|
118 |
+
@cl.on_message
|
119 |
+
async def main(message):
|
120 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
121 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
122 |
+
|
123 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
124 |
+
answer = res["answer"]
|
125 |
+
source_documents = res["source_documents"] # type: List[Document]
|
126 |
+
|
127 |
+
text_elements = [] # type: List[cl.Text]
|
128 |
+
|
129 |
+
if source_documents:
|
130 |
+
for source_idx, source_doc in enumerate(source_documents):
|
131 |
+
source_name = f"source_{source_idx}"
|
132 |
+
# Create the text element referenced in the message
|
133 |
+
text_elements.append(
|
134 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
135 |
+
)
|
136 |
+
source_names = [text_el.name for text_el in text_elements]
|
137 |
+
|
138 |
+
if source_names:
|
139 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
140 |
+
else:
|
141 |
+
answer += "\nNo sources found"
|
142 |
+
|
143 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pypdf==3.8.1
|
2 |
+
pinecone-client==2.2.1
|
3 |
+
tiktoken==0.3.3
|
4 |
+
langchain
|
5 |
+
chainlit
|