evanperez commited on
Commit
2486da3
·
verified ·
1 Parent(s): bfe04df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -146,8 +146,18 @@ def user_input(user_question, api_key):
146
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
147
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
148
 
 
 
 
 
 
 
 
 
 
 
149
  # Tokenize the prompt
150
- inputs = tokenizer(prompt_template.format(response_gemini["output_text"]), return_tensors="pt", max_length=100, truncation=True)
151
 
152
  # Generate the transformed response using the Hugging Face model
153
  outputs = model.generate(**inputs)
@@ -156,10 +166,8 @@ def user_input(user_question, api_key):
156
  transformed_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
157
 
158
  # Display the transformed response
159
- st.write("Reply: ", transformed_response)
160
 
161
- # Update chat history
162
- update_chat_history(user_question, transformed_response)
163
 
164
 
165
 
 
146
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
147
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
148
 
149
+ # Define the prompt template
150
+ prompt_template = f"""
151
+ Transform the following response into a more conversational tone without adding new information:
152
+
153
+ Response:
154
+ {response_gemini["output_text"]}
155
+
156
+ Transformed Response:
157
+ """
158
+
159
  # Tokenize the prompt
160
+ inputs = tokenizer(prompt_template, return_tensors="pt", max_length=100, truncation=True)
161
 
162
  # Generate the transformed response using the Hugging Face model
163
  outputs = model.generate(**inputs)
 
166
  transformed_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
167
 
168
  # Display the transformed response
169
+ st.write("Reply: ", transforme
170
 
 
 
171
 
172
 
173