|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Exact match test for model comparison.""" |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
import evaluate |
|
|
|
|
|
_DESCRIPTION = """ |
|
Returns the rate at which the predictions of one model exactly match those of another model. |
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Args: |
|
predictions1 (`list` of `int`): Predicted labels for model 1. |
|
predictions2 (`list` of `int`): Predicted labels for model 2. |
|
|
|
Returns: |
|
exact_match (`float`): Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive. |
|
|
|
Examples: |
|
>>> exact_match = evaluate.load("exact_match", module_type="comparison") |
|
>>> results = exact_match.compute(predictions1=[1, 1, 1], predictions2=[1, 1, 1]) |
|
>>> print(results) |
|
{'exact_match': 1.0} |
|
""" |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ExactMatch(evaluate.Comparison): |
|
def _info(self): |
|
return evaluate.ComparisonInfo( |
|
module_type="comparison", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"predictions1": datasets.Value("int64"), |
|
"predictions2": datasets.Value("int64"), |
|
} |
|
), |
|
) |
|
|
|
def _compute(self, predictions1, predictions2): |
|
score_list = [p1 == p2 for p1, p2 in zip(predictions1, predictions2)] |
|
return {"exact_match": np.mean(score_list)} |
|
|