Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -271,11 +271,10 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
| 271 |
"""
|
| 272 |
return formatted_description
|
| 273 |
|
| 274 |
-
# 預測單隻狗的品種
|
| 275 |
async def predict_single_dog(image):
|
| 276 |
image_tensor = preprocess_image(image)
|
| 277 |
with torch.no_grad():
|
| 278 |
-
output = model(image_tensor)
|
| 279 |
logits = output[0] if isinstance(output, tuple) else output
|
| 280 |
probabilities = F.softmax(logits, dim=1)
|
| 281 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
|
@@ -309,7 +308,7 @@ async def predict(image):
|
|
| 309 |
if isinstance(image, np.ndarray):
|
| 310 |
image = Image.fromarray(image)
|
| 311 |
|
| 312 |
-
#
|
| 313 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 314 |
|
| 315 |
if top1_prob >= 0.5:
|
|
@@ -329,50 +328,9 @@ async def predict(image):
|
|
| 329 |
breed_buttons = [f"More about {breed}" for breed in topk_breeds[:3]]
|
| 330 |
return explanation, image, gr.update(visible=True, choices=breed_buttons), gr.update(visible=False), gr.update(visible=False)
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
if len(dogs) > 1:
|
| 337 |
-
# Multiple dogs detected, process each one
|
| 338 |
-
explanations = []
|
| 339 |
-
buttons = []
|
| 340 |
-
annotated_image = image.copy()
|
| 341 |
-
draw = ImageDraw.Draw(annotated_image)
|
| 342 |
-
font = ImageFont.load_default()
|
| 343 |
-
|
| 344 |
-
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
| 345 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 346 |
-
|
| 347 |
-
draw.rectangle(box, outline="red", width=3)
|
| 348 |
-
draw.text((box[0], box[1]), f"Dog {i}", fill="yellow", font=font)
|
| 349 |
-
|
| 350 |
-
if top1_prob >= 0.5:
|
| 351 |
-
breed = topk_breeds[0]
|
| 352 |
-
description = get_dog_description(breed)
|
| 353 |
-
explanations.append(format_description(description, breed, is_multi_dog=True, dog_number=i))
|
| 354 |
-
else:
|
| 355 |
-
explanation = f"""
|
| 356 |
-
Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
| 357 |
-
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
| 358 |
-
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
| 359 |
-
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
| 360 |
-
"""
|
| 361 |
-
explanations.append(explanation)
|
| 362 |
-
for breed in topk_breeds:
|
| 363 |
-
buttons.append(f"More about Dog {i}: {breed}")
|
| 364 |
-
|
| 365 |
-
final_explanation = "\n\n---\n\n".join(explanations)
|
| 366 |
-
|
| 367 |
-
if buttons:
|
| 368 |
-
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), gr.update(visible=False), gr.update(visible=False)
|
| 369 |
-
else:
|
| 370 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 371 |
-
|
| 372 |
-
else:
|
| 373 |
-
# No dogs detected or only one dog with low confidence
|
| 374 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 375 |
-
|
| 376 |
except Exception as e:
|
| 377 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 378 |
|
|
|
|
| 271 |
"""
|
| 272 |
return formatted_description
|
| 273 |
|
|
|
|
| 274 |
async def predict_single_dog(image):
|
| 275 |
image_tensor = preprocess_image(image)
|
| 276 |
with torch.no_grad():
|
| 277 |
+
output = model(image_tensor.to(device))
|
| 278 |
logits = output[0] if isinstance(output, tuple) else output
|
| 279 |
probabilities = F.softmax(logits, dim=1)
|
| 280 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
|
|
|
| 308 |
if isinstance(image, np.ndarray):
|
| 309 |
image = Image.fromarray(image)
|
| 310 |
|
| 311 |
+
# Always start with single dog prediction
|
| 312 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 313 |
|
| 314 |
if top1_prob >= 0.5:
|
|
|
|
| 328 |
breed_buttons = [f"More about {breed}" for breed in topk_breeds[:3]]
|
| 329 |
return explanation, image, gr.update(visible=True, choices=breed_buttons), gr.update(visible=False), gr.update(visible=False)
|
| 330 |
|
| 331 |
+
else: # top1_prob < 0.2
|
| 332 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 333 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
except Exception as e:
|
| 335 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 336 |
|