Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -167,105 +167,43 @@ async def predict_single_dog(image):
|
|
| 167 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 168 |
|
| 169 |
|
| 170 |
-
|
| 171 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 172 |
-
# dogs = []
|
| 173 |
-
# boxes = []
|
| 174 |
-
# for box in results.boxes:
|
| 175 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
| 176 |
-
# xyxy = box.xyxy[0].tolist()
|
| 177 |
-
# confidence = box.conf.item()
|
| 178 |
-
# boxes.append((xyxy, confidence))
|
| 179 |
-
|
| 180 |
-
# if not boxes:
|
| 181 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 182 |
-
# else:
|
| 183 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
| 184 |
-
|
| 185 |
-
# for box, confidence in nms_boxes:
|
| 186 |
-
# x1, y1, x2, y2 = box
|
| 187 |
-
# w, h = x2 - x1, y2 - y1
|
| 188 |
-
# x1 = max(0, x1 - w * 0.05)
|
| 189 |
-
# y1 = max(0, y1 - h * 0.05)
|
| 190 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
| 191 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
| 192 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
| 193 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 194 |
-
|
| 195 |
-
# return dogs
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
# def non_max_suppression(boxes, iou_threshold):
|
| 199 |
-
# keep = []
|
| 200 |
-
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
| 201 |
-
# while boxes:
|
| 202 |
-
# current = boxes.pop(0)
|
| 203 |
-
# keep.append(current)
|
| 204 |
-
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 205 |
-
# return keep
|
| 206 |
-
|
| 207 |
-
# def calculate_iou(box1, box2):
|
| 208 |
-
# x1 = max(box1[0], box2[0])
|
| 209 |
-
# y1 = max(box1[1], box2[1])
|
| 210 |
-
# x2 = min(box1[2], box2[2])
|
| 211 |
-
# y2 = min(box1[3], box2[3])
|
| 212 |
-
|
| 213 |
-
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
| 214 |
-
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
| 215 |
-
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 216 |
-
|
| 217 |
-
# iou = intersection / float(area1 + area2 - intersection)
|
| 218 |
-
# return iou
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3):
|
| 222 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 223 |
dogs = []
|
| 224 |
boxes = []
|
| 225 |
-
|
| 226 |
for box in results.boxes:
|
| 227 |
if box.cls == 16: # COCO dataset class for dog is 16
|
| 228 |
xyxy = box.xyxy[0].tolist()
|
| 229 |
confidence = box.conf.item()
|
| 230 |
boxes.append((xyxy, confidence))
|
| 231 |
-
|
| 232 |
if not boxes:
|
| 233 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 234 |
else:
|
| 235 |
-
|
| 236 |
-
valid_boxes = [box for box in boxes if (box[0][2] - box[0][0]) * (box[0][3] - box[0][1]) > 0.1 * image.width * image.height]
|
| 237 |
-
|
| 238 |
-
nms_boxes = non_max_suppression(valid_boxes, iou_threshold)
|
| 239 |
|
| 240 |
for box, confidence in nms_boxes:
|
| 241 |
x1, y1, x2, y2 = box
|
| 242 |
w, h = x2 - x1, y2 - y1
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# 根據框的大小動態調整信心門檻
|
| 249 |
-
if w * h < 0.05 * image.width * image.height:
|
| 250 |
-
continue # 過小的框直接跳過
|
| 251 |
-
|
| 252 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 253 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 254 |
-
|
| 255 |
return dogs
|
| 256 |
|
| 257 |
|
| 258 |
-
def non_max_suppression(boxes, iou_threshold
|
| 259 |
keep = []
|
| 260 |
-
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
| 261 |
-
|
| 262 |
while boxes:
|
| 263 |
current = boxes.pop(0)
|
| 264 |
keep.append(current)
|
| 265 |
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 266 |
return keep
|
| 267 |
|
| 268 |
-
|
| 269 |
def calculate_iou(box1, box2):
|
| 270 |
x1 = max(box1[0], box2[0])
|
| 271 |
y1 = max(box1[1], box2[1])
|
|
@@ -280,8 +218,6 @@ def calculate_iou(box1, box2):
|
|
| 280 |
return iou
|
| 281 |
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
| 285 |
async def process_single_dog(image):
|
| 286 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 287 |
if top1_prob < 0.2:
|
|
|
|
| 167 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 168 |
|
| 169 |
|
| 170 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 172 |
dogs = []
|
| 173 |
boxes = []
|
|
|
|
| 174 |
for box in results.boxes:
|
| 175 |
if box.cls == 16: # COCO dataset class for dog is 16
|
| 176 |
xyxy = box.xyxy[0].tolist()
|
| 177 |
confidence = box.conf.item()
|
| 178 |
boxes.append((xyxy, confidence))
|
| 179 |
+
|
| 180 |
if not boxes:
|
| 181 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
| 182 |
else:
|
| 183 |
+
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
for box, confidence in nms_boxes:
|
| 186 |
x1, y1, x2, y2 = box
|
| 187 |
w, h = x2 - x1, y2 - y1
|
| 188 |
+
x1 = max(0, x1 - w * 0.05)
|
| 189 |
+
y1 = max(0, y1 - h * 0.05)
|
| 190 |
+
x2 = min(image.width, x2 + w * 0.05)
|
| 191 |
+
y2 = min(image.height, y2 + h * 0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
cropped_image = image.crop((x1, y1, x2, y2))
|
| 193 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
| 194 |
+
|
| 195 |
return dogs
|
| 196 |
|
| 197 |
|
| 198 |
+
def non_max_suppression(boxes, iou_threshold):
|
| 199 |
keep = []
|
| 200 |
+
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
|
| 201 |
while boxes:
|
| 202 |
current = boxes.pop(0)
|
| 203 |
keep.append(current)
|
| 204 |
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
| 205 |
return keep
|
| 206 |
|
|
|
|
| 207 |
def calculate_iou(box1, box2):
|
| 208 |
x1 = max(box1[0], box2[0])
|
| 209 |
y1 = max(box1[1], box2[1])
|
|
|
|
| 218 |
return iou
|
| 219 |
|
| 220 |
|
|
|
|
|
|
|
| 221 |
async def process_single_dog(image):
|
| 222 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 223 |
if top1_prob < 0.2:
|