Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gradio.data_classes import FileData | |
from huggingface_hub import snapshot_download | |
from pathlib import Path | |
import base64 | |
import spaces | |
import os | |
from mistral_inference.transformer import Transformer | |
from mistral_inference.generate import generate | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk | |
from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
models_path = Path.home().joinpath('pixtral', 'Pixtral') | |
models_path.mkdir(parents=True, exist_ok=True) | |
snapshot_download(repo_id="mistral-community/pixtral-12b-240910", | |
allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], | |
local_dir=models_path) | |
tokenizer = MistralTokenizer.from_file(f"{models_path}/tekken.json") | |
model = Transformer.from_folder(models_path) | |
def image_to_base64(image_path): | |
with open(image_path, 'rb') as img: | |
encoded_string = base64.b64encode(img.read()).decode('utf-8') | |
return f"data:image/jpeg;base64,{encoded_string}" | |
def run_inference(image_url, prompt): | |
base64 = image_to_base64(image_url) | |
completion_request = ChatCompletionRequest(messages=[UserMessage(content=[ImageURLChunk(image_url=base64), TextChunk(text=prompt)])]) | |
encoded = tokenizer.encode_chat_completion(completion_request) | |
images = encoded.images | |
tokens = encoded.tokens | |
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=512, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
result = tokenizer.decode(out_tokens[0]) | |
return [[prompt, result]] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
image_box = gr.Image(type="filepath") | |
chatbot = gr.Chatbot( | |
scale = 2, | |
height=750 | |
) | |
text_box = gr.Textbox( | |
placeholder="Enter text and press enter, or upload an image", | |
container=False, | |
) | |
btn = gr.Button("Submit") | |
clicked = btn.click(run_inference, | |
[image_box,text_box], | |
chatbot | |
) | |
demo.queue().launch() |