Update app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,4 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from datasets import load_dataset
|
5 |
-
import random
|
6 |
-
|
7 |
-
from skincancer_vit.model import SkinCancerViTModel
|
8 |
-
|
9 |
-
HF_MODEL_REPO = "ethicalabs/SkinCancerViT"
|
10 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
-
|
12 |
-
|
13 |
-
print(f"Loading SkinCancerViT model from {HF_MODEL_REPO} to {DEVICE}...")
|
14 |
-
|
15 |
-
model = SkinCancerViTModel.from_pretrained(HF_MODEL_REPO)
|
16 |
-
model.to(DEVICE)
|
17 |
-
model.eval() # Set to evaluation mode
|
18 |
-
print("Model loaded successfully.")
|
19 |
-
|
20 |
-
print("Loading 'marmal88/skin_cancer' dataset for random samples...")
|
21 |
-
dataset = load_dataset("marmal88/skin_cancer", split="test")
|
22 |
-
print("Dataset loaded successfully.")
|
23 |
-
|
24 |
-
|
25 |
-
def predict_uploaded_image(image: Image.Image, age: int, localization: str) -> str:
|
26 |
-
"""
|
27 |
-
Handles prediction for an uploaded image with user-provided tabular data.
|
28 |
-
"""
|
29 |
-
if model is None:
|
30 |
-
return "Error: Model not loaded. Please check the console for details."
|
31 |
-
if image is None:
|
32 |
-
return "Please upload an image."
|
33 |
-
if age is None:
|
34 |
-
return "Please enter an age."
|
35 |
-
if not localization:
|
36 |
-
return "Please select a localization."
|
37 |
-
|
38 |
-
try:
|
39 |
-
# Call the model's full_predict method
|
40 |
-
predicted_dx, confidence = model.full_predict(
|
41 |
-
raw_image=image, raw_age=age, raw_localization=localization, device=DEVICE
|
42 |
-
)
|
43 |
-
return f"Predicted Diagnosis: **{predicted_dx}** (Confidence: {confidence:.4f})"
|
44 |
-
except Exception as e:
|
45 |
-
return f"Prediction Error: {e}"
|
46 |
-
|
47 |
-
|
48 |
-
# --- Prediction Function for Random Sample ---
|
49 |
-
def predict_random_sample() -> str:
|
50 |
-
"""
|
51 |
-
Fetches a random sample from the dataset and performs prediction.
|
52 |
-
"""
|
53 |
-
if model is None:
|
54 |
-
return "Error: Model not loaded. Please check the console for details."
|
55 |
-
if dataset is None:
|
56 |
-
return "Error: Dataset not loaded. Cannot select random sample."
|
57 |
-
|
58 |
-
try:
|
59 |
-
# Select a random sample from the dataset
|
60 |
-
random_idx = random.randint(0, len(dataset) - 1)
|
61 |
-
sample = dataset[random_idx]
|
62 |
-
|
63 |
-
sample_image = sample["image"]
|
64 |
-
sample_age = sample["age"]
|
65 |
-
sample_localization = sample["localization"]
|
66 |
-
sample_true_dx = sample["dx"]
|
67 |
-
|
68 |
-
# Call the model's full_predict method
|
69 |
-
predicted_dx, confidence = model.full_predict(
|
70 |
-
raw_image=sample_image,
|
71 |
-
raw_age=sample_age,
|
72 |
-
raw_localization=sample_localization,
|
73 |
-
device=DEVICE,
|
74 |
-
)
|
75 |
-
|
76 |
-
# Return a formatted string with all information
|
77 |
-
result_str = (
|
78 |
-
f"**Random Sample Details:**\n"
|
79 |
-
f"- Age: {sample_age}\n"
|
80 |
-
f"- Localization: {sample_localization}\n"
|
81 |
-
f"- True Diagnosis: **{sample_true_dx}**\n\n"
|
82 |
-
f"**Model Prediction:**\n"
|
83 |
-
f"- Predicted Diagnosis: **{predicted_dx}**\n"
|
84 |
-
f"- Confidence: {confidence:.4f}\n"
|
85 |
-
f"- Correct Prediction: {'✅ Yes' if predicted_dx == sample_true_dx else '❌ No'}"
|
86 |
-
)
|
87 |
-
return sample_image, result_str
|
88 |
-
except Exception as e:
|
89 |
-
return None, f"Prediction Error on Random Sample: {e}"
|
90 |
-
|
91 |
-
|
92 |
-
# --- Gradio Interface ---
|
93 |
-
with gr.Blocks(title="Skin Cancer ViT Predictor") as demo:
|
94 |
-
gr.Markdown(
|
95 |
-
"""
|
96 |
-
# Skin Cancer ViT Predictor
|
97 |
-
This application demonstrates the `SkinCancerViT` multimodal model for skin cancer diagnosis.
|
98 |
-
It can take an uploaded image with patient metadata or predict on a random sample from the dataset.
|
99 |
-
**Disclaimer:** This tool is for demonstration and research purposes only and should not be used for medical diagnosis.
|
100 |
-
"""
|
101 |
-
)
|
102 |
-
|
103 |
-
with gr.Tab("Predict on Random Sample"):
|
104 |
-
gr.Markdown("## Get a Prediction from a Random Sample in the Test Set")
|
105 |
-
random_sample_button = gr.Button("Get Random Sample Prediction")
|
106 |
-
|
107 |
-
# Modified output components for random sample tab
|
108 |
-
with gr.Row():
|
109 |
-
output_random_image = gr.Image(
|
110 |
-
type="pil", label="Random Sample Image", height=250, width=250
|
111 |
-
)
|
112 |
-
output_random_details = gr.Markdown(
|
113 |
-
"Random sample details and prediction will appear here."
|
114 |
-
)
|
115 |
-
|
116 |
-
random_sample_button.click(
|
117 |
-
fn=predict_random_sample,
|
118 |
-
inputs=[],
|
119 |
-
outputs=[
|
120 |
-
output_random_image,
|
121 |
-
output_random_details,
|
122 |
-
], # Map to both image and markdown outputs
|
123 |
-
)
|
124 |
-
|
125 |
-
with gr.Tab("Upload Image & Predict"):
|
126 |
-
gr.Markdown("## Upload Your Image and Provide Patient Data")
|
127 |
-
with gr.Row():
|
128 |
-
image_input = gr.Image(
|
129 |
-
type="pil", label="Upload Skin Lesion Image (224x224 preferred)"
|
130 |
-
)
|
131 |
-
with gr.Column():
|
132 |
-
age_input = gr.Number(
|
133 |
-
label="Patient Age", minimum=0, maximum=120, step=1
|
134 |
-
)
|
135 |
-
# Ensure these localizations match your training data categories
|
136 |
-
localization_input = gr.Dropdown(
|
137 |
-
model.config.localization_to_id.keys(),
|
138 |
-
label="Lesion Localization",
|
139 |
-
value="unknown", # Default value
|
140 |
-
)
|
141 |
-
predict_button = gr.Button("Get Prediction")
|
142 |
-
|
143 |
-
output_upload = gr.Markdown("Prediction will appear here.")
|
144 |
-
|
145 |
-
predict_button.click(
|
146 |
-
fn=predict_uploaded_image,
|
147 |
-
inputs=[image_input, age_input, localization_input],
|
148 |
-
outputs=output_upload,
|
149 |
-
)
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
-
demo.launch(share=False)
|
153 |
-
|
|
|
1 |
+
from skincancer_vit.gradio_app import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
if __name__ == "__main__":
|
4 |
+
demo.launch(share=False)
|
|