import torch import torchvision.models as models import torchvision.transforms as transforms import torchvision.datasets as datasets from torchvision.transforms import Compose import requests import random import gradio as gr image_prediction_models = { 'resnet': models.resnet50, 'alexnet': models.alexnet, 'vgg': models.vgg16, 'squeezenet': models.squeezenet1_0, 'densenet': models.densenet161, 'inception': models.inception_v3, 'googlenet': models.googlenet, 'shufflenet': models.shufflenet_v2_x1_0, 'mobilenet': models.mobilenet_v2, 'resnext': models.resnext50_32x4d, 'wide_resnet': models.wide_resnet50_2, 'mnasnet': models.mnasnet1_0, 'efficientnet': models.efficientnet_b0, 'regnet': models.regnet_y_400mf, 'vit': models.vit_b_16, 'convnext': models.convnext_tiny } def load_pretrained_model(model_name): model_name_lower = model_name.lower() if model_name_lower in image_prediction_models: model_class = image_prediction_models[model_name_lower] model = model_class(pretrained=True) return model else: raise ValueError(f"Model {model_name} is not available for image prediction in torchvision.models") def get_model_names(models_dict): return [name.capitalize() for name in models_dict.keys()] model_list = get_model_names(image_prediction_models) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def preprocess(model_name): input_size = 224 if model_name == 'inception': input_size = 299 return transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(input_size), transforms.ToTensor(), normalize, ]) response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def postprocess_default(output): probabilities = torch.nn.functional.softmax(output[0], dim=0) top_prob, top_catid = torch.topk(probabilities, 5) confidences = {labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))} return confidences def postprocess_inception(output): probabilities = torch.nn.functional.softmax(output[1], dim=0) top_prob, top_catid = torch.topk(probabilities, 5) confidences = {labels[top_catid[i].item()]: top_prob[i].item() for i in range(top_prob.size(0))} return confidences def classify_image(input_image, selected_model): preprocess_input = preprocess(model_name=selected_model) input_tensor = preprocess_input(input_image) input_batch = input_tensor.unsqueeze(0) model = load_pretrained_model(selected_model) if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') model.eval() with torch.no_grad(): output = model(input_batch) if selected_model.lower() == 'inception': return postprocess_inception(output) else: return postprocess_default(output) def get_random_image(): cifar10 = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) random_idx = random.randint(0, len(cifar10) - 1) image, _ = cifar10[random_idx] image = transforms.ToPILImage()(image) return image def generate_random_image(): image = get_random_image() return image def classify_generated_image(image, model): return classify_image(image, model) with gr.Blocks() as demo: with gr.Tabs(): with gr.TabItem("Upload Image"): with gr.Row(): with gr.Column(): upload_image = gr.Image(type='pil', label="Upload Image") model_dropdown_upload = gr.Dropdown(model_list, label="Select Model") classify_button_upload = gr.Button("Classify") with gr.Column(): output_label_upload = gr.Label(num_top_classes=5) classify_button_upload.click(classify_image, inputs=[upload_image, model_dropdown_upload], outputs=output_label_upload) with gr.TabItem("Generate Random Image"): with gr.Row(): with gr.Column(): generate_button = gr.Button("Generate Random Image") random_image_output = gr.Image(type='pil', label="Random CIFAR-10 Image") with gr.Column(): model_dropdown_random = gr.Dropdown(model_list, label="Select Model") classify_button_random = gr.Button("Classify") output_label_random = gr.Label(num_top_classes=5) generate_button.click(generate_random_image, inputs=[], outputs=random_image_output) classify_button_random.click(classify_generated_image, inputs=[random_image_output, model_dropdown_random], outputs=output_label_random) demo.launch()