initial-dev
Browse files
app.py
CHANGED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
|
| 6 |
+
|
| 7 |
+
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
|
| 8 |
+
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
| 9 |
+
generate_kwargs = {
|
| 10 |
+
"inputs": inputs,
|
| 11 |
+
"max_length": max_length,
|
| 12 |
+
"min_length": min_length,
|
| 13 |
+
"num_beams": num_beams,
|
| 14 |
+
"temperature": temperature,
|
| 15 |
+
"top_p": top_p,
|
| 16 |
+
"early_stopping": True
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
if max_new_tokens > 0:
|
| 20 |
+
generate_kwargs["max_new_tokens"] = max_new_tokens
|
| 21 |
+
|
| 22 |
+
outputs = model.generate(**generate_kwargs)
|
| 23 |
+
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 24 |
+
return corrected_text
|
| 25 |
+
|
| 26 |
+
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
| 27 |
+
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
| 28 |
+
yield response
|
| 29 |
+
|
| 30 |
+
css = """
|
| 31 |
+
#interface-container {
|
| 32 |
+
padding: 20px;
|
| 33 |
+
border-radius: 10px;
|
| 34 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
|
| 35 |
+
max-width: 800px;
|
| 36 |
+
margin: auto;
|
| 37 |
+
font-family: 'Arial', sans-serif;
|
| 38 |
+
}
|
| 39 |
+
#input-container {
|
| 40 |
+
margin-bottom: 20px;
|
| 41 |
+
}
|
| 42 |
+
#output-container {
|
| 43 |
+
margin-top: 20px;
|
| 44 |
+
font-family: Arial, sans-serif;
|
| 45 |
+
font-size: 16px;
|
| 46 |
+
color: #333;
|
| 47 |
+
padding: 10px;
|
| 48 |
+
border-radius: 5px;
|
| 49 |
+
border: 1px solid #ddd;
|
| 50 |
+
}
|
| 51 |
+
.gr-button {
|
| 52 |
+
background-color: #007bff;
|
| 53 |
+
color: white;
|
| 54 |
+
border: none;
|
| 55 |
+
padding: 10px 20px;
|
| 56 |
+
border-radius: 5px;
|
| 57 |
+
cursor: pointer;
|
| 58 |
+
font-size: 16px;
|
| 59 |
+
}
|
| 60 |
+
.gr-button:hover {
|
| 61 |
+
background-color: #0056b3;
|
| 62 |
+
}
|
| 63 |
+
.gr-slider .gr-slider-track {
|
| 64 |
+
background-color: #007bff;
|
| 65 |
+
}
|
| 66 |
+
.gr-slider .gr-slider-thumb {
|
| 67 |
+
background-color: #0056b3;
|
| 68 |
+
}
|
| 69 |
+
.gr-textbox input {
|
| 70 |
+
border: 1px solid #ddd;
|
| 71 |
+
border-radius: 5px;
|
| 72 |
+
padding: 10px;
|
| 73 |
+
}
|
| 74 |
+
.gr-textbox textarea {
|
| 75 |
+
border: 1px solid #ddd;
|
| 76 |
+
border-radius: 5px;
|
| 77 |
+
padding: 10px;
|
| 78 |
+
}
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
with gr.Blocks(css=css) as demo:
|
| 82 |
+
gr.HTML("<h1 style='text-align: center; color: #007bff;'>Grammar Correction Tool</h1>")
|
| 83 |
+
|
| 84 |
+
with gr.Row(elem_id="interface-container"):
|
| 85 |
+
with gr.Column():
|
| 86 |
+
user_input = gr.Textbox(lines=2, placeholder="Enter a sentence with grammatical errors...", label="Input Text", elem_id="input-container")
|
| 87 |
+
max_length = gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length")
|
| 88 |
+
min_length = gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length")
|
| 89 |
+
max_new_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)")
|
| 90 |
+
num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams")
|
| 91 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 92 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 93 |
+
|
| 94 |
+
btn = gr.Button("Correct Grammar")
|
| 95 |
+
|
| 96 |
+
with gr.Column():
|
| 97 |
+
corrected_output = gr.Textbox(lines=2, placeholder="The corrected sentence will appear here...", label="Corrected Text", elem_id="output-container")
|
| 98 |
+
|
| 99 |
+
btn.click(
|
| 100 |
+
fn=correct_text,
|
| 101 |
+
inputs=[user_input, max_length, max_new_tokens, min_length, num_beams, temperature, top_p],
|
| 102 |
+
outputs=corrected_output
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
demo.launch()
|