Update app.py
Browse files
app.py
CHANGED
|
@@ -6,40 +6,22 @@ from typing import Union
|
|
| 6 |
|
| 7 |
class Preprocessor:
|
| 8 |
def __init__(self):
|
| 9 |
-
"""
|
| 10 |
-
Initialize the preprocessing transformations.
|
| 11 |
-
"""
|
| 12 |
self.transform = transforms.Compose([
|
| 13 |
transforms.ToTensor(),
|
| 14 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 15 |
])
|
| 16 |
|
| 17 |
def __call__(self, image: Image.Image) -> torch.Tensor:
|
| 18 |
-
"""
|
| 19 |
-
Apply preprocessing to the input image.
|
| 20 |
-
|
| 21 |
-
:param image: Input image to be preprocessed.
|
| 22 |
-
:return: Preprocessed image as a tensor.
|
| 23 |
-
"""
|
| 24 |
return self.transform(image)
|
| 25 |
|
| 26 |
class SegmentationModel:
|
| 27 |
def __init__(self):
|
| 28 |
-
"""
|
| 29 |
-
Initialize and load the DeepLabV3 ResNet101 model.
|
| 30 |
-
"""
|
| 31 |
self.model = models.segmentation.deeplabv3_resnet101(pretrained=True)
|
| 32 |
self.model.eval()
|
| 33 |
if torch.cuda.is_available():
|
| 34 |
self.model.to('cuda')
|
| 35 |
|
| 36 |
def predict(self, input_batch: torch.Tensor) -> torch.Tensor:
|
| 37 |
-
"""
|
| 38 |
-
Perform inference using the model on the input batch.
|
| 39 |
-
|
| 40 |
-
:param input_batch: Batch of preprocessed images.
|
| 41 |
-
:return: Model output tensor.
|
| 42 |
-
"""
|
| 43 |
with torch.no_grad():
|
| 44 |
if torch.cuda.is_available():
|
| 45 |
input_batch = input_batch.to('cuda')
|
|
@@ -48,40 +30,22 @@ class SegmentationModel:
|
|
| 48 |
|
| 49 |
class OutputColorizer:
|
| 50 |
def __init__(self):
|
| 51 |
-
"""
|
| 52 |
-
Initialize the color palette for segmentations.
|
| 53 |
-
"""
|
| 54 |
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
| 55 |
-
colors
|
| 56 |
self.colors = (colors % 255).numpy().astype("uint8")
|
| 57 |
|
| 58 |
def colorize(self, output: torch.Tensor) -> Image.Image:
|
| 59 |
-
"""
|
| 60 |
-
Apply colorization to the segmentation output.
|
| 61 |
-
|
| 62 |
-
:param output: Segmentation output tensor.
|
| 63 |
-
:return: Colorized segmentation image.
|
| 64 |
-
"""
|
| 65 |
colorized_output = Image.fromarray(output.byte().cpu().numpy(), mode='P')
|
| 66 |
colorized_output.putpalette(self.colors.ravel())
|
| 67 |
return colorized_output
|
| 68 |
|
| 69 |
class Segmenter:
|
| 70 |
def __init__(self):
|
| 71 |
-
"""
|
| 72 |
-
Initialize the Segmenter with Preprocessor, SegmentationModel, and OutputColorizer.
|
| 73 |
-
"""
|
| 74 |
self.preprocessor = Preprocessor()
|
| 75 |
self.model = SegmentationModel()
|
| 76 |
self.colorizer = OutputColorizer()
|
| 77 |
|
| 78 |
def segment(self, image: Union[Image.Image, torch.Tensor]) -> Image.Image:
|
| 79 |
-
"""
|
| 80 |
-
Perform the complete segmentation process on the input image.
|
| 81 |
-
|
| 82 |
-
:param image: Input image to be segmented.
|
| 83 |
-
:return: Colorized segmentation image.
|
| 84 |
-
"""
|
| 85 |
input_image: Image.Image = image.convert("RGB")
|
| 86 |
input_tensor: torch.Tensor = self.preprocessor(input_image)
|
| 87 |
input_batch: torch.Tensor = input_tensor.unsqueeze(0)
|
|
@@ -99,4 +63,5 @@ interface = gr.Interface(
|
|
| 99 |
description="Upload an image to perform semantic segmentation using Deeplabv3 ResNet101."
|
| 100 |
)
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
| 6 |
|
| 7 |
class Preprocessor:
|
| 8 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 9 |
self.transform = transforms.Compose([
|
| 10 |
transforms.ToTensor(),
|
| 11 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 12 |
])
|
| 13 |
|
| 14 |
def __call__(self, image: Image.Image) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
return self.transform(image)
|
| 16 |
|
| 17 |
class SegmentationModel:
|
| 18 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 19 |
self.model = models.segmentation.deeplabv3_resnet101(pretrained=True)
|
| 20 |
self.model.eval()
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
self.model.to('cuda')
|
| 23 |
|
| 24 |
def predict(self, input_batch: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
with torch.no_grad():
|
| 26 |
if torch.cuda.is_available():
|
| 27 |
input_batch = input_batch.to('cuda')
|
|
|
|
| 30 |
|
| 31 |
class OutputColorizer:
|
| 32 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 33 |
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
| 34 |
+
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
|
| 35 |
self.colors = (colors % 255).numpy().astype("uint8")
|
| 36 |
|
| 37 |
def colorize(self, output: torch.Tensor) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
colorized_output = Image.fromarray(output.byte().cpu().numpy(), mode='P')
|
| 39 |
colorized_output.putpalette(self.colors.ravel())
|
| 40 |
return colorized_output
|
| 41 |
|
| 42 |
class Segmenter:
|
| 43 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 44 |
self.preprocessor = Preprocessor()
|
| 45 |
self.model = SegmentationModel()
|
| 46 |
self.colorizer = OutputColorizer()
|
| 47 |
|
| 48 |
def segment(self, image: Union[Image.Image, torch.Tensor]) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
input_image: Image.Image = image.convert("RGB")
|
| 50 |
input_tensor: torch.Tensor = self.preprocessor(input_image)
|
| 51 |
input_batch: torch.Tensor = input_tensor.unsqueeze(0)
|
|
|
|
| 63 |
description="Upload an image to perform semantic segmentation using Deeplabv3 ResNet101."
|
| 64 |
)
|
| 65 |
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
interface.launch()
|