Update app.py
Browse files
app.py
CHANGED
@@ -6,40 +6,22 @@ from typing import Union
|
|
6 |
|
7 |
class Preprocessor:
|
8 |
def __init__(self):
|
9 |
-
"""
|
10 |
-
Initialize the preprocessing transformations.
|
11 |
-
"""
|
12 |
self.transform = transforms.Compose([
|
13 |
transforms.ToTensor(),
|
14 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
15 |
])
|
16 |
|
17 |
def __call__(self, image: Image.Image) -> torch.Tensor:
|
18 |
-
"""
|
19 |
-
Apply preprocessing to the input image.
|
20 |
-
|
21 |
-
:param image: Input image to be preprocessed.
|
22 |
-
:return: Preprocessed image as a tensor.
|
23 |
-
"""
|
24 |
return self.transform(image)
|
25 |
|
26 |
class SegmentationModel:
|
27 |
def __init__(self):
|
28 |
-
"""
|
29 |
-
Initialize and load the DeepLabV3 ResNet101 model.
|
30 |
-
"""
|
31 |
self.model = models.segmentation.deeplabv3_resnet101(pretrained=True)
|
32 |
self.model.eval()
|
33 |
if torch.cuda.is_available():
|
34 |
self.model.to('cuda')
|
35 |
|
36 |
def predict(self, input_batch: torch.Tensor) -> torch.Tensor:
|
37 |
-
"""
|
38 |
-
Perform inference using the model on the input batch.
|
39 |
-
|
40 |
-
:param input_batch: Batch of preprocessed images.
|
41 |
-
:return: Model output tensor.
|
42 |
-
"""
|
43 |
with torch.no_grad():
|
44 |
if torch.cuda.is_available():
|
45 |
input_batch = input_batch.to('cuda')
|
@@ -48,40 +30,22 @@ class SegmentationModel:
|
|
48 |
|
49 |
class OutputColorizer:
|
50 |
def __init__(self):
|
51 |
-
"""
|
52 |
-
Initialize the color palette for segmentations.
|
53 |
-
"""
|
54 |
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
55 |
-
colors
|
56 |
self.colors = (colors % 255).numpy().astype("uint8")
|
57 |
|
58 |
def colorize(self, output: torch.Tensor) -> Image.Image:
|
59 |
-
"""
|
60 |
-
Apply colorization to the segmentation output.
|
61 |
-
|
62 |
-
:param output: Segmentation output tensor.
|
63 |
-
:return: Colorized segmentation image.
|
64 |
-
"""
|
65 |
colorized_output = Image.fromarray(output.byte().cpu().numpy(), mode='P')
|
66 |
colorized_output.putpalette(self.colors.ravel())
|
67 |
return colorized_output
|
68 |
|
69 |
class Segmenter:
|
70 |
def __init__(self):
|
71 |
-
"""
|
72 |
-
Initialize the Segmenter with Preprocessor, SegmentationModel, and OutputColorizer.
|
73 |
-
"""
|
74 |
self.preprocessor = Preprocessor()
|
75 |
self.model = SegmentationModel()
|
76 |
self.colorizer = OutputColorizer()
|
77 |
|
78 |
def segment(self, image: Union[Image.Image, torch.Tensor]) -> Image.Image:
|
79 |
-
"""
|
80 |
-
Perform the complete segmentation process on the input image.
|
81 |
-
|
82 |
-
:param image: Input image to be segmented.
|
83 |
-
:return: Colorized segmentation image.
|
84 |
-
"""
|
85 |
input_image: Image.Image = image.convert("RGB")
|
86 |
input_tensor: torch.Tensor = self.preprocessor(input_image)
|
87 |
input_batch: torch.Tensor = input_tensor.unsqueeze(0)
|
@@ -99,4 +63,5 @@ interface = gr.Interface(
|
|
99 |
description="Upload an image to perform semantic segmentation using Deeplabv3 ResNet101."
|
100 |
)
|
101 |
|
102 |
-
|
|
|
|
6 |
|
7 |
class Preprocessor:
|
8 |
def __init__(self):
|
|
|
|
|
|
|
9 |
self.transform = transforms.Compose([
|
10 |
transforms.ToTensor(),
|
11 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
12 |
])
|
13 |
|
14 |
def __call__(self, image: Image.Image) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
return self.transform(image)
|
16 |
|
17 |
class SegmentationModel:
|
18 |
def __init__(self):
|
|
|
|
|
|
|
19 |
self.model = models.segmentation.deeplabv3_resnet101(pretrained=True)
|
20 |
self.model.eval()
|
21 |
if torch.cuda.is_available():
|
22 |
self.model.to('cuda')
|
23 |
|
24 |
def predict(self, input_batch: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with torch.no_grad():
|
26 |
if torch.cuda.is_available():
|
27 |
input_batch = input_batch.to('cuda')
|
|
|
30 |
|
31 |
class OutputColorizer:
|
32 |
def __init__(self):
|
|
|
|
|
|
|
33 |
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
34 |
+
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
|
35 |
self.colors = (colors % 255).numpy().astype("uint8")
|
36 |
|
37 |
def colorize(self, output: torch.Tensor) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
colorized_output = Image.fromarray(output.byte().cpu().numpy(), mode='P')
|
39 |
colorized_output.putpalette(self.colors.ravel())
|
40 |
return colorized_output
|
41 |
|
42 |
class Segmenter:
|
43 |
def __init__(self):
|
|
|
|
|
|
|
44 |
self.preprocessor = Preprocessor()
|
45 |
self.model = SegmentationModel()
|
46 |
self.colorizer = OutputColorizer()
|
47 |
|
48 |
def segment(self, image: Union[Image.Image, torch.Tensor]) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
input_image: Image.Image = image.convert("RGB")
|
50 |
input_tensor: torch.Tensor = self.preprocessor(input_image)
|
51 |
input_batch: torch.Tensor = input_tensor.unsqueeze(0)
|
|
|
63 |
description="Upload an image to perform semantic segmentation using Deeplabv3 ResNet101."
|
64 |
)
|
65 |
|
66 |
+
if __name__ == "__main__":
|
67 |
+
interface.launch()
|