File size: 3,492 Bytes
f252cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
from torchvision import models, transforms
from PIL import Image
import gradio as gr
from typing import Union

class Preprocessor:
    def __init__(self):
        """
        Initialize the preprocessing transformations.
        """
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])

    def __call__(self, image: Image.Image) -> torch.Tensor:
        """
        Apply preprocessing to the input image.

        :param image: Input image to be preprocessed.
        :return: Preprocessed image as a tensor.
        """
        return self.transform(image)

class SegmentationModel:
    def __init__(self):
        """
        Initialize and load the DeepLabV3 ResNet101 model.
        """
        self.model = models.segmentation.deeplabv3_resnet101(pretrained=True)
        self.model.eval()
        if torch.cuda.is_available():
            self.model.to('cuda')

    def predict(self, input_batch: torch.Tensor) -> torch.Tensor:
        """
        Perform inference using the model on the input batch.

        :param input_batch: Batch of preprocessed images.
        :return: Model output tensor.
        """
        with torch.no_grad():
            if torch.cuda.is_available():
                input_batch = input_batch.to('cuda')
            output: torch.Tensor = self.model(input_batch)['out'][0]
        return output

class OutputColorizer:
    def __init__(self):
        """
        Initialize the color palette for segmentations.
        """
        palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
        colors : torch.Tensor = torch.as_tensor([i for i in range(21)])[:, None] * palette
        self.colors = (colors % 255).numpy().astype("uint8")

    def colorize(self, output: torch.Tensor) -> Image.Image:
        """
        Apply colorization to the segmentation output.

        :param output: Segmentation output tensor.
        :return: Colorized segmentation image.
        """
        colorized_output = Image.fromarray(output.byte().cpu().numpy(), mode='P')
        colorized_output.putpalette(self.colors.ravel())
        return colorized_output

class Segmenter:
    def __init__(self):
        """
        Initialize the Segmenter with Preprocessor, SegmentationModel, and OutputColorizer.
        """
        self.preprocessor = Preprocessor()
        self.model = SegmentationModel()
        self.colorizer = OutputColorizer()

    def segment(self, image: Union[Image.Image, torch.Tensor]) -> Image.Image:
        """
        Perform the complete segmentation process on the input image.

        :param image: Input image to be segmented.
        :return: Colorized segmentation image.
        """
        input_image: Image.Image = image.convert("RGB")
        input_tensor: torch.Tensor = self.preprocessor(input_image)
        input_batch: torch.Tensor = input_tensor.unsqueeze(0)
        output: torch.Tensor = self.model.predict(input_batch)
        output_predictions: torch.Tensor = output.argmax(0)
        return self.colorizer.colorize(output_predictions)

segmenter = Segmenter()

interface = gr.Interface(
    fn=segmenter.segment,
    inputs=gr.Image(type="pil"),
    outputs=gr.Image(type="pil"),
    title="Deeplabv3 Segmentation",
    description="Upload an image to perform semantic segmentation using Deeplabv3 ResNet101."
)

if __name__ == "__main__":
    interface.launch()