Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torchvision.models.detection as models
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from torchvision.transforms import ToTensor, Compose
|
6 |
+
from torch.nn import Module
|
7 |
+
from io import BytesIO
|
8 |
+
import requests
|
9 |
+
from PIL import Image as Im, ImageDraw
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
OBJECT_DETECTION_MODELS = {
|
13 |
+
"fasterrcnn_resnet50_fpn": models.fasterrcnn_resnet50_fpn,
|
14 |
+
"maskrcnn_resnet50_fpn": models.maskrcnn_resnet50_fpn,
|
15 |
+
}
|
16 |
+
|
17 |
+
class ModelLoader:
|
18 |
+
def __init__(self, model_dict: dict):
|
19 |
+
self.model_dict = model_dict
|
20 |
+
|
21 |
+
def load_model(self, model_name: str) -> Module:
|
22 |
+
model_name_lower = model_name.lower()
|
23 |
+
if model_name_lower in self.model_dict:
|
24 |
+
model_class = self.model_dict[model_name_lower]
|
25 |
+
model = model_class(pretrained=True)
|
26 |
+
model.eval()
|
27 |
+
return model
|
28 |
+
else:
|
29 |
+
raise ValueError(f"Model {model_name} is not supported")
|
30 |
+
|
31 |
+
class Preprocessor:
|
32 |
+
def __init__(self, transform: Compose = Compose([ToTensor()])):
|
33 |
+
self.transform = transform
|
34 |
+
|
35 |
+
def preprocess(self, image: Im) -> Tensor:
|
36 |
+
return self.transform(image).unsqueeze(0)
|
37 |
+
|
38 |
+
class Postprocessor:
|
39 |
+
def __init__(self, threshold: float = 0.5):
|
40 |
+
self.threshold = threshold
|
41 |
+
|
42 |
+
def postprocess(self, image: Im, predictions: dict) -> Im:
|
43 |
+
draw = ImageDraw.Draw(image)
|
44 |
+
for box, score in zip(predictions['boxes'], predictions['scores']):
|
45 |
+
if score > self.threshold:
|
46 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
47 |
+
draw.text((box[0], box[1]), f"{score:.2f}", fill="red")
|
48 |
+
return image
|
49 |
+
|
50 |
+
class ObjectDetection:
|
51 |
+
def __init__(self, model_loader: ModelLoader, preprocessor: Preprocessor, postprocessor: Postprocessor):
|
52 |
+
self.model_loader = model_loader
|
53 |
+
self.preprocessor = preprocessor
|
54 |
+
self.postprocessor = postprocessor
|
55 |
+
|
56 |
+
def detect(self, image: Im, selected_model: str) -> Im:
|
57 |
+
model = self.model_loader.load_model(selected_model)
|
58 |
+
input_tensor = self.preprocessor.preprocess(image)
|
59 |
+
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
input_tensor = input_tensor.to("cuda")
|
62 |
+
model = model.to("cuda")
|
63 |
+
|
64 |
+
model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
output = model(input_tensor)
|
67 |
+
return self.postprocessor.postprocess(image, output[0])
|
68 |
+
|
69 |
+
class GradioApp:
|
70 |
+
def __init__(self, object_detection: ObjectDetection):
|
71 |
+
self.detector = object_detection
|
72 |
+
|
73 |
+
def launch(self):
|
74 |
+
with gr.Blocks() as demo:
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
upload_image = gr.Image(type='pil', label="Upload Image")
|
78 |
+
self.model_dropdown = gr.Dropdown(choices=list(OBJECT_DETECTION_MODELS.keys()), label="Select Model")
|
79 |
+
detection_button = gr.Button("Detect")
|
80 |
+
with gr.Column():
|
81 |
+
output = gr.Image(type='pil', label="Detection")
|
82 |
+
detection_button.click(fn=self.detector.detect, inputs=[upload_image, self.model_dropdown], outputs=output)
|
83 |
+
demo.launch()
|
84 |
+
|
85 |
+
model_loader = ModelLoader(OBJECT_DETECTION_MODELS)
|
86 |
+
preprocessor = Preprocessor()
|
87 |
+
postprocessor = Postprocessor()
|
88 |
+
object_detection = ObjectDetection(model_loader, preprocessor, postprocessor)
|
89 |
+
app = GradioApp(object_detection)
|
90 |
+
app.launch()
|