Podcastify / conver.py
eswardivi's picture
Ported the space to use API and local version still exists but in different branch
5fe16b1
raw
history blame
5.45 kB
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import re
import httpx
import json
from openai import OpenAI
import edge_tts
import tempfile
import wave
from pydub import AudioSegment
import base64
from pathlib import Path
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": self._build_prompt(text)}],
model=self.config.model_name,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def _build_prompt(self, text: str) -> str:
template = """
{
"conversation": [
{"speaker": "", "text": ""},
{"speaker": "", "text": ""}
]
}
"""
return (
f"{text}\nConvert the provided text into a short informative and crisp "
f"podcast conversation between two experts. The tone should be "
f"professional and engaging. Please adhere to the following "
f"format and return the conversation in JSON:\n{template}"
)
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voice_1 if i % 2 == 0 else voice_2
tmp_path, error = await self._generate_audio(turn["text"], voice)
if error:
raise RuntimeError(f"Text-to-speech failed: {error}")
os.rename(tmp_path, filename)
filenames.append(str(filename))
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
if not text.strip():
return None, "Text cannot be empty"
if not voice:
return None, "Voice cannot be empty"
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
def _create_output_directory(self) -> str:
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
if not filenames:
raise ValueError("No input files provided")
try:
audio_segments = []
for filename in filenames:
audio_segment = AudioSegment.from_mp3(filename)
audio_segments.append(audio_segment)
combined = sum(audio_segments)
combined.export(output_file, format="wav")
for filename in filenames:
os.remove(filename)
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> str:
text = self.fetch_text(url)
words = text.split()
if len(words) > self.config.max_words:
text = " ".join(words[: self.config.max_words])
conversation_json = self.extract_conversation(text)
self.llm_out = conversation_json
audio_files, folder_name = await self.text_to_speech(
conversation_json, voice_1, voice_2
)
final_output = os.path.join(folder_name, "combined_output.wav")
self.combine_audio_files(audio_files, final_output)
return final_output