|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig |
|
import os |
|
from threading import Thread |
|
import spaces |
|
import time |
|
|
|
token = os.environ["HF_TOKEN"] |
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16 |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-7b-it", |
|
quantization_config=quantization_config, |
|
token=token) |
|
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
print(f"Using GPU: {torch.cuda.get_device_name(device)}") |
|
else: |
|
device = torch.device('cpu') |
|
print("Using CPU") |
|
|
|
|
|
|
|
model = model.to_bettertransformer() |
|
|
|
@spaces.GPU |
|
def chat(message, history): |
|
start_time = time.time() |
|
chat = [] |
|
for item in history: |
|
chat.append({"role": "user", "content": item[0]}) |
|
if item[1] is not None: |
|
chat.append({"role": "assistant", "content": item[1]}) |
|
chat.append({"role": "user", "content": message}) |
|
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
model_inputs = tok([messages], return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer( |
|
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=0.75, |
|
num_beams=1, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
partial_text = "" |
|
first_token_time = None |
|
for new_text in streamer: |
|
if not first_token_time: |
|
first_token_time = time.time() - start_time |
|
partial_text += new_text |
|
yield partial_text |
|
|
|
total_time = time.time() - start_time |
|
tokens = len(tok.tokenize(partial_text)) |
|
tokens_per_second = tokens / total_time if total_time > 0 else 0 |
|
|
|
|
|
timing_info = f"\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}" |
|
yield partial_text + timing_info |
|
|
|
demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="Chat With LLMS") |
|
demo.launch() |
|
|