#derivative and edit from QR-code-AI-art-generator by patrickvonplaten - customized AND COPYRIGHTED UNDER COMMERCIAL LICENSE #ControlNet model is controlnet_qrcode-control_v1p_sd15 #to do - remove stable diff 2 API and use a different model for generation for init image #add init image !!! #Change controlnetmodel #--------------changelog----------------- #Changed all sizes to 512 to line with sd 1.5 #removed examples #changed description text for model #changed sliders to set easier limits #forced QR as INIT image temp #removed some options and sliders by commenting out, may reenable import torch import gradio as gr from PIL import Image import qrcode from pathlib import Path from multiprocessing import cpu_count import requests import io import os from PIL import Image from diffusers import ( StableDiffusionPipeline, StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler, EulerDiscreteScheduler, ) API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" HF_TOKEN = os.environ.get("HF_TOKEN") headers = {"Authorization": f"Bearer {HF_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content qrcode_generator = qrcode.QRCode( version=1, error_correction=qrcode.ERROR_CORRECT_H, box_size=10, border=4, ) controlnet = ControlNetModel.from_pretrained( "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16, ).to("cuda") pipe.enable_xformers_memory_efficient_attention() def resize_for_condition_image(input_image: Image.Image, resolution: int = 512): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 32.0)) * 32 W = int(round(W / 32.0)) * 32 img = input_image.resize((W, H), resample=Image.LANCZOS) return img SAMPLER_MAP = { "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True), "Heun": lambda config: HeunDiscreteScheduler.from_config(config), "Euler": lambda config: EulerDiscreteScheduler.from_config(config), "DDIM": lambda config: DDIMScheduler.from_config(config), "DEIS": lambda config: DEISMultistepScheduler.from_config(config), } def inference( qr_code_content: str, prompt: str, negative_prompt: str, guidance_scale: float = 10.0, controlnet_conditioning_scale: float = 2.0, strength: float = 0.8, seed: int = -1, init_image: Image.Image | None = None, qrcode_image: Image.Image | None = None, use_qr_code_as_init_image = True, sampler = "DDIM", ): if prompt is None or prompt == "": raise gr.Error("Prompt is required") if qrcode_image is None and qr_code_content == "": raise gr.Error("QR Code Image or QR Code Content is required") pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() if qr_code_content != "" or qrcode_image.size == (1, 1): print("Generating QR Code from content") qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_H, box_size=10, border=4, ) qr.add_data(qr_code_content) qr.make(fit=True) qrcode_image = qr.make_image(fill_color="black", back_color="white") qrcode_image = resize_for_condition_image(qrcode_image, 512) else: print("Using QR Code Image") qrcode_image = resize_for_condition_image(qrcode_image, 512) # hack due to gradio examples if use_qr_code_as_init_image: init_image = qrcode_image elif init_image is None or init_image.size == (1, 1): print("Generating random image from prompt using Stable Diffusion 2.1 via Inference API") # generate image from prompt image_bytes = query({"inputs": prompt}) init_image = Image.open(io.BytesIO(image_bytes)) else: print("Using provided init image") init_image = resize_for_condition_image(init_image, 512) #promptstart = "" promptend = ", high quality, high resolution" prompt += promptend negative_promptend = ", butt, nipple, nsfw, nude, nudity, naked" negative_prompt += negative_promptend out = pipe( prompt=prompt, negative_prompt=negative_prompt, image=qrcode_image, control_image=qrcode_image, # type: ignore width=512, # type: ignore height=512, # type: ignore guidance_scale=float(guidance_scale), controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore generator=generator, strength=float(strength), num_inference_steps=30, ) return out.images[0] # type: ignore #removed text with gr.Blocks() as blocks: gr.Markdown( """ ====================================================EARLY BETA - PUBLIC ACCESS V1.02=========================================================================== ***DISCLAIMER - By using this model you agree to waive any liability and are assuming all responsibility for generated images.*** ***IMAGES GENERATED BY THIS PUBLIC VERISON ARE NOT INTENDED FOR COMMERCIAL USE*** First, type in what you want the QR code to look like. Use major subjects seperated by commas like the example below. Ex. Mountian, snow, morning, trees Then, type your QR code information such as a website link or enter your own QR code. Hit generate! ===========================================================CUSTOM SETTINGS==================================================================================== The default settings should work for testing. We are currently working on improving the model and offering more customization! QR High Pass - QR Passover -Change this to affect how much the QR code is overlayed to your image in a second pass. **Higher setting is more QR code, lower setting is less QR code.** QR Initial Weight - this is the initial image - Change this to affect how much your image starts looking like a QR code! **Higher settings mean your image starts with less QR, lower means the QR will appear sharper** Prompt Weight - This determines how much the AI "Listens" to your prompt and try to put what you described into your image. **Lower means it is more absract and higher follows your direction more.** Seed - This is a randomizer! Use the same seed to generate the same image over and over. Change the seed to change up your image! """ ) prompt = gr.Textbox( label="Prompt", info="Prompt that describes your image - Ex. Mountian, snow, morning, trees", ) negative_prompt = gr.Textbox(visible=True, label="Negative Prompt", info="Input things you don't want to see in your image for the model.", value="poorly drawn, blurry image, deformed, low resolution, disfigured, low quality, blurry") with gr.Row(): with gr.Column(): qr_code_content = gr.Textbox( label="QR Code Content", info="QR Code Content or URL", value="", ) with gr.Accordion(label="QR Code Image (Optional)", open=False): qr_code_image = gr.Image( label="QR Code Image (Optional). Leave blank to automatically generate QR code", type="pil", ) #negative_prompt = gr.Textbox( # label="Negative Prompt", # value="disfigured, low quality, blurry, nsfw", #) use_qr_code_as_init_image = gr.Checkbox(visible= False, label="QR Code is used as initial image.", value=True, interactive=False, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1") with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc: init_image = gr.Image(visible=False, label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil") #def change_view(qr_code_as_image: bool): # if not qr_code_as_image: # return {init_image_acc: gr.update(visible=True)} # else: # return {init_image_acc: gr.update(visible=False)} #use_qr_code_as_init_image.change(change_view, inputs=[use_qr_code_as_init_image], outputs=[init_image_acc]) with gr.Accordion( label="You can modify the generation slightly using the below sliders. See details above. \n ", open=True, ): controlnet_conditioning_scale = gr.Slider( minimum=0.6, maximum=2.0, step=0.01, value=0.65, label="QR High Pass", ) strength = gr.Slider( minimum=0.8, maximum=.95, step=0.01, value=0.9, label="QR Initial Weight" ) guidance_scale = gr.Slider( minimum=5.0, maximum=15.0, step=0.25, value=7.5, label="Prompt Weight", ) sampler = gr.Textbox(visible=False, value="DDIM") #gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE") seed = gr.Slider( minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed (-1 is Randomized)", randomize=True, ) with gr.Row(): run_btn = gr.Button("Run") with gr.Column(): result_image = gr.Image(label="Result Image") run_btn.click( inference, inputs=[ qr_code_content, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, init_image, qr_code_image, use_qr_code_as_init_image, sampler, ], outputs=[result_image], ) blocks.queue(concurrency_count=1, max_size=20) blocks.launch(share=False)