File size: 10,942 Bytes
9a45519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#derivative and edit from QR-code-AI-art-generator by patrickvonplaten - customized AND COPYRIGHTED UNDER COMMERCIAL LICENSE
#ControlNet model is controlnet_qrcode-control_v1p_sd15
#to do - remove stable diff 2 API and use a different model for generation for init image
#add init image !!!
#Change controlnetmodel 
#--------------changelog-----------------
#Changed all sizes to 512 to line with sd 1.5
#removed examples
#changed description text for model
#changed sliders to set easier limits 
#forced QR as INIT image temp
#removed some options and sliders by commenting out, may reenable


import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
import requests
import io
import os
from PIL import Image

from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
)

API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
HF_TOKEN = os.environ.get("HF_TOKEN")

headers = {"Authorization": f"Bearer {HF_TOKEN}"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content

qrcode_generator = qrcode.QRCode(
    version=1,
    error_correction=qrcode.ERROR_CORRECT_H,
    box_size=10,
    border=4,
)

controlnet = ControlNetModel.from_pretrained(
    "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()



def resize_for_condition_image(input_image: Image.Image, resolution: int = 512):
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 32.0)) * 32
    W = int(round(W / 32.0)) * 32
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    return img


SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
    "DDIM": lambda config: DDIMScheduler.from_config(config),
    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}


def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 10.0,
    controlnet_conditioning_scale: float = 2.0,
    strength: float = 0.8,
    seed: int = -1,
    init_image: Image.Image | None = None,
    qrcode_image: Image.Image | None = None,
    use_qr_code_as_init_image = True,
    sampler = "DDIM",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")

    if qrcode_image is None and qr_code_content == "":
        raise gr.Error("QR Code Image or QR Code Content is required")

    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)

    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    if qr_code_content != "" or qrcode_image.size == (1, 1):
        print("Generating QR Code from content")
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4,
        )
        qr.add_data(qr_code_content)
        qr.make(fit=True)

        qrcode_image = qr.make_image(fill_color="black", back_color="white")
        qrcode_image = resize_for_condition_image(qrcode_image, 512)
    else:
        print("Using QR Code Image")
        qrcode_image = resize_for_condition_image(qrcode_image, 512)

    # hack due to gradio examples
    if use_qr_code_as_init_image:
        init_image = qrcode_image
    elif init_image is None or init_image.size == (1, 1):
        print("Generating random image from prompt using Stable Diffusion 2.1 via Inference API")
        # generate image from prompt
        image_bytes = query({"inputs": prompt})
        init_image = Image.open(io.BytesIO(image_bytes))
    else:
        print("Using provided init image")
        init_image = resize_for_condition_image(init_image, 512)

    #promptstart = ""
    promptend = ", high quality, high resolution"
    prompt += promptend 

    negative_promptend = ", butt, nipple, nsfw, nude, nudity, naked"
    negative_prompt += negative_promptend
    
    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=qrcode_image,
        control_image=qrcode_image,  # type: ignore
        width=512,  # type: ignore
        height=512,  # type: ignore
        guidance_scale=float(guidance_scale),
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),  # type: ignore
        generator=generator,
        strength=float(strength),
        num_inference_steps=30,
    )
    return out.images[0]  # type: ignore

#removed text 
with gr.Blocks() as blocks:
    gr.Markdown(
        """
====================================================EARLY BETA - PUBLIC ACCESS V1.02===========================================================================  
        ***DISCLAIMER - By using this model you agree to waive any liability and are assuming all responsibility for generated images.***    
                        ***IMAGES GENERATED BY THIS PUBLIC VERISON ARE NOT INTENDED FOR COMMERCIAL USE***

First, type in what you want the QR code to look like. Use major subjects seperated by commas like the example below.
Ex. Mountian, snow, morning, trees  
  
Then, type your QR code information such as a website link or enter your own QR code.  
  
Hit generate!  
   
   
===========================================================CUSTOM SETTINGS====================================================================================    
The default settings should work for testing. We are currently working on improving the model and offering more customization!   
   
QR High Pass - QR Passover -Change this to affect how much the QR code is overlayed to your image in a second pass.   
**Higher setting is more QR code, lower setting is less QR code.**   
   
QR Initial Weight - this is the initial image - Change this to affect how much your image starts looking like a QR code!   
**Higher settings mean your image starts with less QR, lower means the QR will appear sharper**  
  
Prompt Weight - This determines how much the AI "Listens" to your prompt and try to put what you described into your image.  
**Lower means it is more absract and higher follows your direction more.**  
  
Seed - This is a randomizer! Use the same seed to generate the same image over and over. Change the seed to change up your image!  

                """
    )
    prompt = gr.Textbox(
    label="Prompt",
    info="Prompt that describes your image - Ex. Mountian, snow, morning, trees",
    )

    negative_prompt = gr.Textbox(visible=True, label="Negative Prompt", 
    info="Input things you don't want to see in your image for the model.",
    value="poorly drawn, blurry image, deformed, low resolution, disfigured, low quality, blurry")

    with gr.Row():
        with gr.Column():
            qr_code_content = gr.Textbox(
                label="QR Code Content",
                info="QR Code Content or URL",
                value="",
            )
            with gr.Accordion(label="QR Code Image (Optional)", open=False):
                qr_code_image = gr.Image(
                    label="QR Code Image (Optional). Leave blank to automatically generate QR code",
                    type="pil",
                )

            #negative_prompt = gr.Textbox(
            #    label="Negative Prompt",
            #    value="disfigured, low quality, blurry, nsfw",
            #)

            use_qr_code_as_init_image = gr.Checkbox(visible= False, label="QR Code is used as initial image.", value=True, interactive=False, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1")

            with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc:
                init_image = gr.Image(visible=False, label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil")

            #def change_view(qr_code_as_image: bool):
            #    if not qr_code_as_image:
            #        return {init_image_acc: gr.update(visible=True)}
            #    else:
            #        return {init_image_acc: gr.update(visible=False)}

            #use_qr_code_as_init_image.change(change_view, inputs=[use_qr_code_as_init_image], outputs=[init_image_acc])

            with gr.Accordion(
                label="You can modify the generation slightly using the below sliders. See details above. \n ",
                open=True,
            ):
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0.6,
                    maximum=2.0,
                    step=0.01,
                    value=0.65,
                    label="QR High Pass",
                )
                strength = gr.Slider(
                    minimum=0.8, maximum=.95, step=0.01, value=0.9, label="QR Initial Weight"
                )
                guidance_scale = gr.Slider(
                    minimum=5.0,
                    maximum=15.0,
                    step=0.25,
                    value=7.5,
                    label="Prompt Weight",
                )
                sampler = gr.Textbox(visible=False, value="DDIM") #gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
                seed = gr.Slider(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=2313123,
                    label="Seed (-1 is Randomized)",
                    randomize=True,
                )
            with gr.Row():
                run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Result Image")
    run_btn.click(
        inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
            init_image,
            qr_code_image,
            use_qr_code_as_init_image,
            sampler,
        ],
        outputs=[result_image],
    )


blocks.queue(concurrency_count=1, max_size=20)
blocks.launch(share=False)