|
import gradio as gr
|
|
import numpy as np
|
|
import random
|
|
|
|
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
|
|
|
|
import torch
|
|
from PIL import Image
|
|
|
|
|
|
modelPath = "stabilityai/sdxl-turbo"
|
|
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
torch.cuda.max_memory_allocated(device=device)
|
|
|
|
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
|
|
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, torch_dtype=torch.float16, variant="fp16")
|
|
|
|
pipeTex2Image.enable_xformers_memory_efficient_attention()
|
|
pipeImage2Image.enable_xformers_memory_efficient_attention()
|
|
|
|
else:
|
|
device = "cpu"
|
|
|
|
pipeTex2Image = AutoPipelineForText2Image.from_pretrained(modelPath, use_safetensors=True)
|
|
pipeImage2Image = AutoPipelineForImage2Image.from_pretrained(modelPath, use_safetensors=True)
|
|
|
|
|
|
|
|
pipeTex2Image.to(device)
|
|
pipeImage2Image.to(device)
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
MAX_IMAGE_SIZE = 1024
|
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, image):
|
|
|
|
if randomize_seed:
|
|
seed = random.randint(0, MAX_SEED)
|
|
|
|
generator = torch.Generator().manual_seed(seed)
|
|
|
|
if use_as_input:
|
|
print("Image to Image:")
|
|
pipe = pipeImage2Image
|
|
init_image = Image.fromarray(np.uint8(image)).resize((width, height)).convert("RGB")
|
|
init_image.save("input.png", format="PNG")
|
|
print(type(init_image), init_image.size)
|
|
image = pipe(
|
|
prompt = prompt,
|
|
negative_prompt = negative_prompt,
|
|
guidance_scale = guidance_scale,
|
|
num_inference_steps = num_inference_steps,
|
|
width = width,
|
|
height = height,
|
|
generator = generator,
|
|
strength=strength,
|
|
image=init_image
|
|
).images[0]
|
|
else:
|
|
print("Text to Image:")
|
|
pipe = pipeTex2Image
|
|
image = pipe(
|
|
prompt = prompt,
|
|
negative_prompt = negative_prompt,
|
|
guidance_scale = guidance_scale,
|
|
num_inference_steps = num_inference_steps,
|
|
width = width,
|
|
height = height,
|
|
generator = generator
|
|
).images[0]
|
|
|
|
return image
|
|
|
|
examples = [
|
|
"Face of a modern woman of Balkan descent 25 years old",
|
|
"Blue car sandero stepway on dirt road",
|
|
"Cow in the skin of a dog of dalmatian breed",
|
|
]
|
|
|
|
css="""
|
|
#col-container {
|
|
margin: 0 auto;
|
|
max-width: auto;
|
|
}
|
|
"""
|
|
|
|
|
|
with gr.Blocks(css=css) as app:
|
|
|
|
with gr.Column(elem_id="col-container"):
|
|
gr.Markdown(f"""
|
|
# Text-to-Image, Image-to-Image by Slavko Novak
|
|
Currently running on {device}.
|
|
""")
|
|
|
|
with gr.Row():
|
|
|
|
prompt = gr.Text(
|
|
label="Prompt",
|
|
show_label=False,
|
|
max_lines=1,
|
|
placeholder="Enter your prompt",
|
|
container=False,
|
|
)
|
|
|
|
run_button = gr.Button("Generate", scale=0)
|
|
|
|
result = gr.Image(label="Result", show_label=False)
|
|
use_as_input = gr.Checkbox(label="Use image as input", value=False)
|
|
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
negative_prompt = gr.Text(
|
|
label="Negative prompt",
|
|
max_lines=1,
|
|
placeholder="Enter a negative prompt",
|
|
visible=True,
|
|
)
|
|
|
|
seed = gr.Slider(
|
|
label="Seed",
|
|
minimum=0,
|
|
maximum=MAX_SEED,
|
|
step=1,
|
|
value=0,
|
|
)
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
with gr.Row():
|
|
|
|
width = gr.Slider(
|
|
label="Width",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=512,
|
|
)
|
|
|
|
height = gr.Slider(
|
|
label="Height",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=512,
|
|
)
|
|
|
|
with gr.Row():
|
|
|
|
guidance_scale = gr.Slider(
|
|
label="Guidance scale",
|
|
minimum=0.0,
|
|
maximum=10.0,
|
|
step=0.1,
|
|
value=0.0,
|
|
)
|
|
|
|
strength = gr.Slider(
|
|
label="Strength scale",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.1,
|
|
value=0.5,
|
|
)
|
|
|
|
num_inference_steps = gr.Slider(
|
|
label="Number of inference steps",
|
|
minimum=1,
|
|
maximum=12,
|
|
step=1,
|
|
value=2,
|
|
)
|
|
|
|
gr.Examples(
|
|
examples = examples,
|
|
inputs = [prompt]
|
|
)
|
|
|
|
run_button.click(
|
|
fn = infer,
|
|
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, use_as_input, strength, result],
|
|
outputs = [result]
|
|
)
|
|
|
|
app.queue().launch(server_name="0.0.0.0", server_port=8080, share=True) |