Spaces:
Configuration error
Configuration error
add uuid for animation temp folders
Browse files- ImageState.py +9 -3
- app.py +4 -1
ImageState.py
CHANGED
@@ -41,8 +41,8 @@ class ImageState:
|
|
41 |
self.transform_history = []
|
42 |
self.attn_mask = None
|
43 |
self.prompt_optim = prompt_optimizer
|
44 |
-
self.state_id =
|
45 |
-
print("NEW INSTANCE")
|
46 |
print(self.state_id)
|
47 |
self._load_vectors()
|
48 |
self.init_transforms()
|
@@ -122,6 +122,9 @@ class ImageState:
|
|
122 |
def _render_all_transformations(self, return_twice=True):
|
123 |
global num
|
124 |
# global vqgan
|
|
|
|
|
|
|
125 |
current_vector_transforms = (self.blue_eyes, self.lip_size, self.hair_gp, self.asian_transform, sum(self.current_prompt_transforms))
|
126 |
new_latent = self.blend_latent + sum(current_vector_transforms)
|
127 |
if self.quant:
|
@@ -159,7 +162,8 @@ class ImageState:
|
|
159 |
if path1 is None: path1 = path2
|
160 |
if path2 is None: path2 = path1
|
161 |
self.path1, self.path2 = path1, path2
|
162 |
-
|
|
|
163 |
return self.blend(blend_weight)
|
164 |
@torch.no_grad()
|
165 |
def blend(self, weight):
|
@@ -182,6 +186,8 @@ class ImageState:
|
|
182 |
# rep[mask >= 0.03] = 1
|
183 |
# return rep
|
184 |
def apply_prompts(self, positive_prompts, negative_prompts, lr, iterations, lpips_weight, reconstruction_steps):
|
|
|
|
|
185 |
transform_log = PromptTransformHistory(iterations + reconstruction_steps)
|
186 |
transform_log.transforms.append(torch.zeros_like(self.blend_latent, requires_grad=False))
|
187 |
self.current_prompt_transforms.append(torch.zeros_like(self.blend_latent, requires_grad=False))
|
|
|
41 |
self.transform_history = []
|
42 |
self.attn_mask = None
|
43 |
self.prompt_optim = prompt_optimizer
|
44 |
+
self.state_id = None
|
45 |
+
# print("NEW INSTANCE")
|
46 |
print(self.state_id)
|
47 |
self._load_vectors()
|
48 |
self.init_transforms()
|
|
|
122 |
def _render_all_transformations(self, return_twice=True):
|
123 |
global num
|
124 |
# global vqgan
|
125 |
+
if self.state_id is None:
|
126 |
+
self.state_id = str(uuid.uuid4())
|
127 |
+
print("redner all", self.state_id)
|
128 |
current_vector_transforms = (self.blue_eyes, self.lip_size, self.hair_gp, self.asian_transform, sum(self.current_prompt_transforms))
|
129 |
new_latent = self.blend_latent + sum(current_vector_transforms)
|
130 |
if self.quant:
|
|
|
162 |
if path1 is None: path1 = path2
|
163 |
if path2 is None: path2 = path1
|
164 |
self.path1, self.path2 = path1, path2
|
165 |
+
if self.state_id:
|
166 |
+
clear_img_dir(self.state_id)
|
167 |
return self.blend(blend_weight)
|
168 |
@torch.no_grad()
|
169 |
def blend(self, weight):
|
|
|
186 |
# rep[mask >= 0.03] = 1
|
187 |
# return rep
|
188 |
def apply_prompts(self, positive_prompts, negative_prompts, lr, iterations, lpips_weight, reconstruction_steps):
|
189 |
+
if self.state_id is None:
|
190 |
+
self.state_id = "./" + str(uuid.uuid4())
|
191 |
transform_log = PromptTransformHistory(iterations + reconstruction_steps)
|
192 |
transform_log.transforms.append(torch.zeros_like(self.blend_latent, requires_grad=False))
|
193 |
self.current_prompt_transforms.append(torch.zeros_like(self.blend_latent, requires_grad=False))
|
app.py
CHANGED
@@ -8,6 +8,9 @@ import torch
|
|
8 |
from configs import set_major_global, set_major_local, set_preset, set_small_local
|
9 |
import uuid
|
10 |
# print()'
|
|
|
|
|
|
|
11 |
sys.path.append("taming-transformers")
|
12 |
|
13 |
import gradio as gr
|
@@ -71,7 +74,7 @@ class StateWrapper:
|
|
71 |
def update_requant(state, *args, **kwargs):
|
72 |
return state, *state[0].update_requant(*args, **kwargs)
|
73 |
with gr.Blocks(css="styles.css") as demo:
|
74 |
-
id = gr.State(str(uuid.uuid4()))
|
75 |
state = gr.State([ImageState(vqgan, promptoptim), str(uuid.uuid4())])
|
76 |
with gr.Row():
|
77 |
with gr.Column(scale=1):
|
|
|
8 |
from configs import set_major_global, set_major_local, set_preset, set_small_local
|
9 |
import uuid
|
10 |
# print()'
|
11 |
+
import torch
|
12 |
+
import torchvision.models as models
|
13 |
+
from torch.profiler import profile, record_function, ProfilerActivity
|
14 |
sys.path.append("taming-transformers")
|
15 |
|
16 |
import gradio as gr
|
|
|
74 |
def update_requant(state, *args, **kwargs):
|
75 |
return state, *state[0].update_requant(*args, **kwargs)
|
76 |
with gr.Blocks(css="styles.css") as demo:
|
77 |
+
# id = gr.State(str(uuid.uuid4()))
|
78 |
state = gr.State([ImageState(vqgan, promptoptim), str(uuid.uuid4())])
|
79 |
with gr.Row():
|
80 |
with gr.Column(scale=1):
|