File size: 6,261 Bytes
1c1063c
 
ac05a26
1c1063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import os
from interface_utils import *

maxim = 'quantity'
submaxims = ["The response provides a sufficient amount of information.",
             "The response does not contain unnecessary details."]
checkbox_choices = [
    ["Yes", "No", "NA"],
    ["Yes", "No", "NA"]
]

conversation_data = load_from_jsonl('./unlabeled/conversations_unlabeled.jsonl')
max_conversation_length = max([len(conversation['transcript']) for conversation in conversation_data])
conversation = get_conversation(conversation_data)


def save_labels(conv_id, skipped, submaxim_0=None, submaxim_1=None):
    data = {
        'conv_id': conv_id,
        'maxim': maxim,
        'skipped': skipped,
        'submaxim_0': submaxim_0,
        'submaxim_1': submaxim_1,
    }
    os.makedirs("./labels", exist_ok=True)

    with open(f"./labels/{maxim}_human_labels_{conv_id}.json", 'w') as f:
        json.dump(data, f, indent=4)


def update_interface(new_conversation):
    new_conv_id = new_conversation['conv_id']
    new_transcript = pad_transcript(new_conversation['transcript'], max_conversation_length)

    markdown_blocks = [None] * max_conversation_length
    for i in range(max_conversation_length):
        if new_transcript[i]['speaker'] != '':
            markdown_blocks[i] = gr.Markdown(f"""  **{new_transcript[i]['speaker']}**:      {new_transcript[i]['response']}""",
                                             visible=True)
        else:
            markdown_blocks[i] = gr.Markdown("", visible=False)

    new_last_response = gr.Text(value=get_last_response(new_transcript),
                                label="",
                                lines=1,
                                container=False,
                                interactive=False,
                                autoscroll=True,
                                visible=True)
    new_radio_0_base = gr.Radio(label=submaxims[0],
                                choices=checkbox_choices[0],
                                value=None,
                                visible=True)
    new_radio_1_base = gr.Radio(label=submaxims[1],
                                choices=checkbox_choices[1],
                                value=None,
                                visible=True)
    conv_len = gr.Number(value=len(new_transcript), visible=False)

    return [new_conv_id] + list(markdown_blocks) + [new_last_response] + [new_radio_0_base] + [new_radio_1_base] + [conv_len]


def submit(*args):
    conv_id = args[0]
    submaxim_0 = args[-3]
    submaxim_1 = args[-2]

    save_labels(conv_id, skipped=False, submaxim_0=submaxim_0, submaxim_1=submaxim_1)

    new_conversation = get_conversation(conversation_data)
    return update_interface(new_conversation)


def skip(*args):
    conv_id = args[0]
    save_labels(conv_id, skipped=True)

    new_conversation = get_conversation(conversation_data)
    return update_interface(new_conversation)


with gr.Blocks(theme=gr.themes.Default()) as interface:
    conv_id = conversation['conv_id']
    transcript = conversation['transcript']
    conv_len = gr.Number(value=len(transcript), visible=False)
    padded_transcript = pad_transcript(transcript, max_conversation_length)

    markdown_blocks = [None] * max_conversation_length
    with gr.Column(scale=1, min_width=600):
        with gr.Group():
            gr.Markdown("""<span style='font-size: 16px;'>&nbsp;&nbsp;&nbsp;&nbsp;**Conversational context** </span>""",
                        visible=True)
        for i in range(max_conversation_length):
            markdown_blocks[i] = gr.Markdown(f"""&nbsp;&nbsp;**{padded_transcript[i]['speaker']}**: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{padded_transcript[i]['response']}""")
            if i >= conv_len.value:
                markdown_blocks[i].visible = False

        with gr.Row():
            with gr.Group(elem_classes="bottom-aligned-group"):
                speaker_adapted = gr.Markdown(
                    f"""<span style='font-size: 16px;'>&nbsp;&nbsp;&nbsp;&nbsp;**Response to label** </span>""",
                    visible=True)
                last_response = gr.Textbox(value=get_last_response(transcript),
                                           label="",
                                           lines=1,
                                           container=False,
                                           interactive=False,
                                           autoscroll=True,
                                           visible=True)
                radio_submaxim_0_base = gr.Radio(label=submaxims[0],
                                                 choices=checkbox_choices[0],
                                                 value=None,
                                                 visible=True)
                radio_submaxim_1_base = gr.Radio(label=submaxims[1],
                                                 choices=checkbox_choices[1],
                                                 value=None,
                                                 visible=True)

    submit_button = gr.Button("Submit")
    skip_button = gr.Button("Skip")

    conv_id_element = gr.Text(value=conv_id, visible=False)
    input_list = [conv_id_element] + \
                 markdown_blocks + \
                 [last_response] + \
                 [radio_submaxim_0_base] + \
                 [radio_submaxim_1_base] + \
                 [conv_len]
    submit_button.click(
        fn=submit,
        inputs=input_list,
        outputs=[conv_id_element,
                 *markdown_blocks,
                 last_response,
                 radio_submaxim_0_base,
                 radio_submaxim_1_base,
                 conv_len]
    )
    skip_button.click(
        fn=skip,
        inputs=input_list,
        outputs=[conv_id_element,
                 *markdown_blocks,
                 last_response,
                 radio_submaxim_0_base,
                 radio_submaxim_1_base,
                 conv_len]
    )

css = """
#textbox_id textarea {
    background-color: white;
}

.bottom-aligned-group {
    display: flex;
    flex-direction: column;
    justify-content: flex-end;
    height: 100%;
}
"""
interface.css = css
interface.launch()