Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +151 -0
- data/conversations_unlabeled.jsonl +0 -0
- interface_utils.py +50 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from interface_utils import *
|
| 4 |
+
|
| 5 |
+
maxim = 'quality'
|
| 6 |
+
submaxims = ["The response is factual and supported by adequate evidence whenever possible."]
|
| 7 |
+
checkbox_choices = [
|
| 8 |
+
["Yes", "No", "NA"]
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
conversation_data = load_from_jsonl('./data/conversations_unlabeled.jsonl')
|
| 12 |
+
max_conversation_length = max([len(conversation['transcript']) for conversation in conversation_data])
|
| 13 |
+
conversation = get_conversation(conversation_data)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def save_labels(conv_id, skipped, submaxim_0=None):
|
| 17 |
+
data = {
|
| 18 |
+
'conv_id': conv_id,
|
| 19 |
+
'maxim': maxim,
|
| 20 |
+
'skipped': skipped,
|
| 21 |
+
'submaxim_0': submaxim_0
|
| 22 |
+
}
|
| 23 |
+
os.makedirs("./labels", exist_ok=True)
|
| 24 |
+
|
| 25 |
+
with open(f"./labels/{maxim}_human_labels_{conv_id}.json", 'w') as f:
|
| 26 |
+
json.dump(data, f, indent=4)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def update_interface(new_conversation):
|
| 30 |
+
new_conv_id = new_conversation['conv_id']
|
| 31 |
+
new_transcript = pad_transcript(new_conversation['transcript'], max_conversation_length)
|
| 32 |
+
|
| 33 |
+
markdown_blocks = [None] * max_conversation_length
|
| 34 |
+
for i in range(max_conversation_length):
|
| 35 |
+
if new_transcript[i]['speaker'] != '':
|
| 36 |
+
markdown_blocks[i] = gr.Markdown(f""" **{new_transcript[i]['speaker']}**: {new_transcript[i]['response']}""",
|
| 37 |
+
visible=True)
|
| 38 |
+
else:
|
| 39 |
+
markdown_blocks[i] = gr.Markdown("", visible=False)
|
| 40 |
+
|
| 41 |
+
new_last_response = gr.Text(value=get_last_response(new_transcript),
|
| 42 |
+
label="",
|
| 43 |
+
lines=1,
|
| 44 |
+
container=False,
|
| 45 |
+
interactive=False,
|
| 46 |
+
autoscroll=True,
|
| 47 |
+
visible=True)
|
| 48 |
+
new_radio_0_base = gr.Radio(label=submaxims[0],
|
| 49 |
+
choices=checkbox_choices[0],
|
| 50 |
+
value=None,
|
| 51 |
+
visible=True)
|
| 52 |
+
conv_len = gr.Number(value=len(new_transcript), visible=False)
|
| 53 |
+
|
| 54 |
+
return [new_conv_id] + list(markdown_blocks) + [new_last_response] + [new_radio_0_base] + [conv_len]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def submit(*args):
|
| 58 |
+
conv_id = args[0]
|
| 59 |
+
submaxim_0 = args[-2]
|
| 60 |
+
|
| 61 |
+
save_labels(conv_id, skipped=False, submaxim_0=submaxim_0)
|
| 62 |
+
|
| 63 |
+
new_conversation = get_conversation(conversation_data)
|
| 64 |
+
return update_interface(new_conversation)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def skip(*args):
|
| 68 |
+
conv_id = args[0]
|
| 69 |
+
save_labels(conv_id, skipped=True)
|
| 70 |
+
|
| 71 |
+
new_conversation = get_conversation(conversation_data)
|
| 72 |
+
return update_interface(new_conversation)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
with gr.Blocks(theme=gr.themes.Default()) as interface:
|
| 76 |
+
conv_id = conversation['conv_id']
|
| 77 |
+
transcript = conversation['transcript']
|
| 78 |
+
conv_len = gr.Number(value=len(transcript), visible=False)
|
| 79 |
+
padded_transcript = pad_transcript(transcript, max_conversation_length)
|
| 80 |
+
|
| 81 |
+
markdown_blocks = [None] * max_conversation_length
|
| 82 |
+
with gr.Column(scale=1, min_width=600):
|
| 83 |
+
with gr.Group():
|
| 84 |
+
gr.Markdown("""<span style='font-size: 16px;'> **Conversational context** </span>""",
|
| 85 |
+
visible=True)
|
| 86 |
+
for i in range(max_conversation_length):
|
| 87 |
+
markdown_blocks[i] = gr.Markdown(f""" **{padded_transcript[i]['speaker']}**: {padded_transcript[i]['response']}""")
|
| 88 |
+
if i >= conv_len.value:
|
| 89 |
+
markdown_blocks[i].visible = False
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
with gr.Group(elem_classes="bottom-aligned-group"):
|
| 93 |
+
speaker_adapted = gr.Markdown(
|
| 94 |
+
f"""<span style='font-size: 16px;'> **Response to label** </span>""",
|
| 95 |
+
visible=True)
|
| 96 |
+
last_response = gr.Textbox(value=get_last_response(transcript),
|
| 97 |
+
label="",
|
| 98 |
+
lines=1,
|
| 99 |
+
container=False,
|
| 100 |
+
interactive=False,
|
| 101 |
+
autoscroll=True,
|
| 102 |
+
visible=True)
|
| 103 |
+
radio_submaxim_0_base = gr.Radio(label=submaxims[0],
|
| 104 |
+
choices=checkbox_choices[0],
|
| 105 |
+
value=None,
|
| 106 |
+
visible=True)
|
| 107 |
+
|
| 108 |
+
submit_button = gr.Button("Submit")
|
| 109 |
+
skip_button = gr.Button("Skip")
|
| 110 |
+
|
| 111 |
+
conv_id_element = gr.Text(value=conv_id, visible=False)
|
| 112 |
+
input_list = [conv_id_element] + \
|
| 113 |
+
markdown_blocks + \
|
| 114 |
+
[last_response] + \
|
| 115 |
+
[radio_submaxim_0_base] + \
|
| 116 |
+
[conv_len]
|
| 117 |
+
submit_button.click(
|
| 118 |
+
fn=submit,
|
| 119 |
+
inputs=input_list,
|
| 120 |
+
outputs=[conv_id_element,
|
| 121 |
+
*markdown_blocks,
|
| 122 |
+
last_response,
|
| 123 |
+
radio_submaxim_0_base,
|
| 124 |
+
conv_len]
|
| 125 |
+
)
|
| 126 |
+
skip_button.click(
|
| 127 |
+
fn=skip,
|
| 128 |
+
inputs=input_list,
|
| 129 |
+
outputs=[conv_id_element,
|
| 130 |
+
*markdown_blocks,
|
| 131 |
+
last_response,
|
| 132 |
+
radio_submaxim_0_base,
|
| 133 |
+
conv_len]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
css = """
|
| 137 |
+
#textbox_id textarea {
|
| 138 |
+
background-color: white;
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
.bottom-aligned-group {
|
| 142 |
+
display: flex;
|
| 143 |
+
flex-direction: column;
|
| 144 |
+
justify-content: flex-end;
|
| 145 |
+
height: 100%;
|
| 146 |
+
}
|
| 147 |
+
"""
|
| 148 |
+
interface.css = css
|
| 149 |
+
interface.launch()
|
| 150 |
+
|
| 151 |
+
|
data/conversations_unlabeled.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
interface_utils.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import uuid
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_from_jsonl(filename, n=np.inf):
|
| 8 |
+
data = []
|
| 9 |
+
with open(filename, 'r') as file:
|
| 10 |
+
for i, line in enumerate(file):
|
| 11 |
+
if i >= n: # stop after reading n lines
|
| 12 |
+
break
|
| 13 |
+
data.append(json.loads(line))
|
| 14 |
+
return data
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def append_id(conversations_no_id):
|
| 18 |
+
conversations = []
|
| 19 |
+
for conversation in conversations_no_id:
|
| 20 |
+
conversations.append({
|
| 21 |
+
'conv_id': uuid.uuid4().hex,
|
| 22 |
+
'transcript': conversation['transcript']
|
| 23 |
+
})
|
| 24 |
+
return conversations
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def save_to_jsonl(data, filename):
|
| 28 |
+
with open(filename, 'w') as file:
|
| 29 |
+
for item in data:
|
| 30 |
+
json_line = json.dumps(item)
|
| 31 |
+
file.write(json_line + '\n')
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_conversation(conversation_data):
|
| 35 |
+
conv = random.choice(conversation_data)
|
| 36 |
+
return conv
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def pad_transcript(transcript, max_length):
|
| 40 |
+
padding_count = max_length - len(transcript)
|
| 41 |
+
if padding_count > 0:
|
| 42 |
+
for _ in range(padding_count):
|
| 43 |
+
transcript.append({'speaker': '', 'response': ''})
|
| 44 |
+
return transcript
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_last_response(transcript):
|
| 48 |
+
for turn in reversed(transcript):
|
| 49 |
+
if turn['speaker'] and turn['response']:
|
| 50 |
+
return turn['response']
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy
|