Spaces:
Sleeping
Sleeping
File size: 3,684 Bytes
d9e5666 0dc3013 ad34200 d9e5666 ad34200 0dc3013 d9e5666 ad34200 0dc3013 ad34200 0dc3013 ad34200 0dc3013 d9e5666 0dc3013 d9e5666 0dc3013 ad34200 d9e5666 ad34200 d9e5666 ad34200 d9e5666 ad34200 d9e5666 ad34200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Initialize model and tokenizer
MODEL_ID = "erikbeltran/pydiff"
GGUF_FILE = "unsloth.Q4_K_M.gguf"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
def format_diff_response(response):
"""Format the response to look like a diff output"""
lines = response.split('\n')
formatted = []
for line in lines:
if line.startswith('+'):
formatted.append(f'<span style="color: green">{line}</span>')
elif line.startswith('-'):
formatted.append(f'<span style="color: red">{line}</span>')
else:
formatted.append(line)
return '<br>'.join(formatted)
def create_prompt(request, file_content, system_message):
return f"""<system>{system_message}</system>
<request>{request}</request>
<file>
{file_content}
</file>"""
@spaces.GPU
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
prompt = create_prompt(request, file_content, system_message)
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Generate response with streaming
response = ""
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
inputs=inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
streamer=streamer,
)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield formatted responses as they're generated
for new_text in streamer:
response += new_text
yield format_diff_response(response)
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Code Review Assistant")
with gr.Row():
with gr.Column():
request_input = gr.Textbox(
label="Request",
placeholder="Enter your request (e.g., 'fix the function', 'add error handling')",
lines=3
)
file_input = gr.Code(
label="File Content",
language="python",
lines=10
)
with gr.Column():
output = gr.HTML(label="Diff Output")
with gr.Accordion("Advanced Settings", open=False):
system_msg = gr.Textbox(
value="You are a code review assistant. Analyze the code and provide suggestions in diff format. Use '+' for additions and '-' for deletions.",
label="System Message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=respond,
inputs=[
request_input,
file_input,
system_msg,
max_tokens,
temperature,
top_p
],
outputs=output
)
if __name__ == "__main__":
demo.launch() |