Spaces:
Runtime error
Runtime error
Eric Michael Martinez
commited on
Commit
·
7b70181
1
Parent(s):
6bc77f3
update async
Browse files- app/app.py +120 -73
app/app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
import requests
|
4 |
import gradio as gr
|
@@ -23,52 +23,50 @@ elif current_environment == "prod":
|
|
23 |
load_dotenv(".env.prod")
|
24 |
else:
|
25 |
raise ValueError("Invalid environment specified")
|
26 |
-
|
27 |
-
|
28 |
def api_login(email, password):
|
29 |
port = os.getenv("APP_PORT")
|
30 |
scheme = os.getenv("APP_SCHEME")
|
31 |
host = os.getenv("APP_HOST")
|
32 |
|
33 |
url = f"{scheme}://{host}:{port}/auth/jwt/login"
|
34 |
-
payload = {
|
35 |
-
|
36 |
-
'password': password
|
37 |
-
}
|
38 |
-
headers = {
|
39 |
-
'Content-Type': 'application/x-www-form-urlencoded'
|
40 |
-
}
|
41 |
|
42 |
-
response = requests.post(
|
43 |
-
|
44 |
-
|
45 |
-
headers=headers
|
46 |
-
)
|
47 |
-
|
48 |
-
if(response.status_code==200):
|
49 |
response_json = response.json()
|
50 |
-
api_key = response_json[
|
51 |
return True, api_key
|
52 |
else:
|
53 |
response_json = response.json()
|
54 |
-
detail = response_json[
|
55 |
return False, detail
|
56 |
-
|
57 |
|
58 |
def get_api_key(email, password):
|
59 |
successful, message = api_login(email, password)
|
60 |
-
|
61 |
-
if
|
62 |
return os.getenv("APP_API_BASE"), message
|
63 |
else:
|
64 |
raise gr.Error(message)
|
65 |
return "", ""
|
66 |
-
|
|
|
67 |
# Define a function to get the AI's reply using the OpenAI API
|
68 |
-
def get_ai_reply(
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Initialize the messages list
|
70 |
messages = []
|
71 |
-
|
72 |
# Add the system message to the messages list
|
73 |
if system_message is not None:
|
74 |
messages += [{"role": "system", "content": system_message}]
|
@@ -76,34 +74,31 @@ def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperatur
|
|
76 |
# Add the message history to the messages list
|
77 |
if message_history is not None:
|
78 |
messages += message_history
|
79 |
-
|
80 |
# Add the user's message to the messages list
|
81 |
messages += [{"role": "user", "content": message}]
|
82 |
-
|
83 |
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
|
84 |
completion = openai.ChatCompletion.create(
|
85 |
-
model=model,
|
86 |
-
messages=messages,
|
87 |
-
temperature=temperature
|
88 |
)
|
89 |
-
|
90 |
# Extract and return the AI's response from the API response
|
91 |
return completion.choices[0].message.content.strip()
|
92 |
|
|
|
93 |
def get_ai_image(prompt, size="512x512"):
|
94 |
-
response = openai.Image.create(
|
95 |
-
|
96 |
-
n=1,
|
97 |
-
size=size
|
98 |
-
)
|
99 |
-
image_1_url = response.data[0]['url']
|
100 |
return image_1_url
|
101 |
|
|
|
102 |
def get_ai_transcript(path_to_audio, language=None):
|
103 |
-
audio_file= open(path_to_audio, "rb")
|
104 |
transcript = openai.Audio.transcribe("whisper-1", audio_file, language=language)
|
105 |
return transcript.text
|
106 |
|
|
|
107 |
def generate_transcription(path_to_audio_file):
|
108 |
try:
|
109 |
transcript = get_ai_transcript(path_to_audio_file)
|
@@ -111,7 +106,8 @@ def generate_transcription(path_to_audio_file):
|
|
111 |
except Exception as e:
|
112 |
raise gr.Error(e)
|
113 |
return ""
|
114 |
-
|
|
|
115 |
def generate_image(prompt):
|
116 |
try:
|
117 |
image_url = get_ai_image(prompt)
|
@@ -119,42 +115,49 @@ def generate_image(prompt):
|
|
119 |
except Exception as e:
|
120 |
raise gr.Error(e)
|
121 |
return None
|
122 |
-
|
|
|
123 |
# Define a function to handle the chat interaction with the AI model
|
124 |
def chat(model, system_message, message, chatbot_messages, history_state):
|
125 |
# Initialize chatbot_messages and history_state if they are not provided
|
126 |
chatbot_messages = chatbot_messages or []
|
127 |
history_state = history_state or []
|
128 |
-
|
129 |
# Try to get the AI's reply using the get_ai_reply function
|
130 |
try:
|
131 |
-
ai_reply = get_ai_reply(
|
|
|
|
|
|
|
|
|
|
|
132 |
except Exception as e:
|
133 |
# If an error occurs, raise a Gradio error
|
134 |
raise gr.Error(e)
|
135 |
-
|
136 |
# Append the user's message and the AI's reply to the chatbot_messages list
|
137 |
chatbot_messages.append((message, ai_reply))
|
138 |
-
|
139 |
# Append the user's message and the AI's reply to the history_state list
|
140 |
history_state.append({"role": "user", "content": message})
|
141 |
history_state.append({"role": "assistant", "content": ai_reply})
|
142 |
-
|
143 |
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
|
144 |
return None, chatbot_messages, history_state
|
145 |
|
|
|
146 |
# Define a function to launch the chatbot interface using Gradio
|
147 |
def get_chatbot_app(additional_examples=[]):
|
148 |
# Load chatbot examples and merge with any additional examples provided
|
149 |
examples = chatbot_examples.load_examples(additional=additional_examples)
|
150 |
-
|
151 |
# Define a function to get the names of the examples
|
152 |
def get_examples():
|
153 |
return [example["name"] for example in examples]
|
154 |
|
155 |
# Define a function to choose an example based on the index
|
156 |
def choose_example(index):
|
157 |
-
if
|
158 |
system_message = examples[index]["system_message"].strip()
|
159 |
user_message = examples[index]["message"].strip()
|
160 |
return system_message, user_message, [], []
|
@@ -167,17 +170,22 @@ def get_chatbot_app(additional_examples=[]):
|
|
167 |
with gr.Row():
|
168 |
with gr.Column():
|
169 |
# Create a dropdown to select examples
|
170 |
-
example_dropdown = gr.Dropdown(
|
|
|
|
|
171 |
# Create a button to load the selected example
|
172 |
example_load_btn = gr.Button(value="Load")
|
173 |
# Create a textbox for the system message (prompt)
|
174 |
-
system_message = gr.TextArea(
|
|
|
|
|
|
|
|
|
|
|
175 |
with gr.Column():
|
176 |
# Create a dropdown to select the AI model
|
177 |
model_selector = gr.Dropdown(
|
178 |
-
["gpt-3.5-turbo"],
|
179 |
-
label="Model",
|
180 |
-
value="gpt-3.5-turbo"
|
181 |
)
|
182 |
# Create a chatbot interface for the conversation
|
183 |
chatbot = gr.Chatbot(label="Conversation")
|
@@ -189,11 +197,27 @@ def get_chatbot_app(additional_examples=[]):
|
|
189 |
btn = gr.Button(value="Send")
|
190 |
|
191 |
# Connect the example load button to the choose_example function
|
192 |
-
example_load_btn.click(
|
|
|
|
|
|
|
|
|
193 |
# Connect the send button to the chat function
|
194 |
-
btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
with gr.Tab("Image Generation"):
|
196 |
-
image_prompt = gr.Textbox(
|
|
|
|
|
197 |
image_btn = gr.Button(value="Generate")
|
198 |
image = gr.Image(label="Result", interactive=False, type="filepath")
|
199 |
image_btn.click(generate_image, inputs=[image_prompt], outputs=[image])
|
@@ -201,17 +225,26 @@ def get_chatbot_app(additional_examples=[]):
|
|
201 |
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
|
202 |
transcribe = gr.Button(value="Transcribe")
|
203 |
audio_transcript = gr.Textbox(label="Transcription", interactive=False)
|
204 |
-
transcribe.click(
|
|
|
|
|
205 |
with gr.Tab("Get API Key"):
|
206 |
email_box = gr.Textbox(label="Email Address", placeholder="Student Email")
|
207 |
-
password_box = gr.Textbox(
|
208 |
-
|
|
|
|
|
209 |
api_host_box = gr.Textbox(label="OpenAI API Base", interactive=False)
|
210 |
api_key_box = gr.Textbox(label="OpenAI API Key", interactive=False)
|
211 |
-
btn.click(
|
|
|
|
|
|
|
|
|
212 |
# Return the app
|
213 |
return app
|
214 |
|
|
|
215 |
app = FastAPI()
|
216 |
|
217 |
app.include_router(
|
@@ -228,10 +261,12 @@ app.include_router(
|
|
228 |
tags=["users"],
|
229 |
)
|
230 |
|
|
|
231 |
@app.get("/authenticated-route")
|
232 |
async def authenticated_route(user: User = Depends(current_active_user)):
|
233 |
return {"message": f"Hello {user.email}!"}
|
234 |
|
|
|
235 |
@app.post("/v1/completions")
|
236 |
async def openai_api_completions_passthrough(
|
237 |
request: Request,
|
@@ -254,7 +289,17 @@ async def openai_api_completions_passthrough(
|
|
254 |
"Authorization": f"Bearer {openai_api_key}",
|
255 |
},
|
256 |
)
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
# Return the OpenAI API response
|
260 |
return response.json()
|
@@ -272,30 +317,32 @@ async def openai_api_chat_completions_passthrough(
|
|
272 |
request_data = await request.json()
|
273 |
request_headers = request.headers
|
274 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
275 |
-
|
276 |
-
if
|
277 |
print("User requested gpt-4, falling back to gpt-3.5-turbo")
|
278 |
-
request_data[
|
279 |
|
280 |
# Forward the request to the OpenAI API
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
|
291 |
# Return the OpenAI API response
|
292 |
return response.json()
|
293 |
|
|
|
294 |
@app.on_event("startup")
|
295 |
async def on_startup():
|
296 |
# Not needed if you setup a migration system like Alembic
|
297 |
await create_db_and_tables()
|
298 |
-
|
|
|
299 |
gradio_gui = get_chatbot_app()
|
300 |
gradio_gui.auth = api_login
|
301 |
gradio_gui.auth_message = "Welcome, to the 4341 OpenAI Service"
|
|
|
1 |
+
from httpx import AsyncClient
|
2 |
import os
|
3 |
import requests
|
4 |
import gradio as gr
|
|
|
23 |
load_dotenv(".env.prod")
|
24 |
else:
|
25 |
raise ValueError("Invalid environment specified")
|
26 |
+
|
27 |
+
|
28 |
def api_login(email, password):
|
29 |
port = os.getenv("APP_PORT")
|
30 |
scheme = os.getenv("APP_SCHEME")
|
31 |
host = os.getenv("APP_HOST")
|
32 |
|
33 |
url = f"{scheme}://{host}:{port}/auth/jwt/login"
|
34 |
+
payload = {"username": email, "password": password}
|
35 |
+
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
response = requests.post(url, data=payload, headers=headers)
|
38 |
+
|
39 |
+
if response.status_code == 200:
|
|
|
|
|
|
|
|
|
40 |
response_json = response.json()
|
41 |
+
api_key = response_json["access_token"]
|
42 |
return True, api_key
|
43 |
else:
|
44 |
response_json = response.json()
|
45 |
+
detail = response_json["detail"]
|
46 |
return False, detail
|
47 |
+
|
48 |
|
49 |
def get_api_key(email, password):
|
50 |
successful, message = api_login(email, password)
|
51 |
+
|
52 |
+
if successful:
|
53 |
return os.getenv("APP_API_BASE"), message
|
54 |
else:
|
55 |
raise gr.Error(message)
|
56 |
return "", ""
|
57 |
+
|
58 |
+
|
59 |
# Define a function to get the AI's reply using the OpenAI API
|
60 |
+
def get_ai_reply(
|
61 |
+
message,
|
62 |
+
model="gpt-3.5-turbo",
|
63 |
+
system_message=None,
|
64 |
+
temperature=0,
|
65 |
+
message_history=[],
|
66 |
+
):
|
67 |
# Initialize the messages list
|
68 |
messages = []
|
69 |
+
|
70 |
# Add the system message to the messages list
|
71 |
if system_message is not None:
|
72 |
messages += [{"role": "system", "content": system_message}]
|
|
|
74 |
# Add the message history to the messages list
|
75 |
if message_history is not None:
|
76 |
messages += message_history
|
77 |
+
|
78 |
# Add the user's message to the messages list
|
79 |
messages += [{"role": "user", "content": message}]
|
80 |
+
|
81 |
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
|
82 |
completion = openai.ChatCompletion.create(
|
83 |
+
model=model, messages=messages, temperature=temperature
|
|
|
|
|
84 |
)
|
85 |
+
|
86 |
# Extract and return the AI's response from the API response
|
87 |
return completion.choices[0].message.content.strip()
|
88 |
|
89 |
+
|
90 |
def get_ai_image(prompt, size="512x512"):
|
91 |
+
response = openai.Image.create(prompt=prompt, n=1, size=size)
|
92 |
+
image_1_url = response.data[0]["url"]
|
|
|
|
|
|
|
|
|
93 |
return image_1_url
|
94 |
|
95 |
+
|
96 |
def get_ai_transcript(path_to_audio, language=None):
|
97 |
+
audio_file = open(path_to_audio, "rb")
|
98 |
transcript = openai.Audio.transcribe("whisper-1", audio_file, language=language)
|
99 |
return transcript.text
|
100 |
|
101 |
+
|
102 |
def generate_transcription(path_to_audio_file):
|
103 |
try:
|
104 |
transcript = get_ai_transcript(path_to_audio_file)
|
|
|
106 |
except Exception as e:
|
107 |
raise gr.Error(e)
|
108 |
return ""
|
109 |
+
|
110 |
+
|
111 |
def generate_image(prompt):
|
112 |
try:
|
113 |
image_url = get_ai_image(prompt)
|
|
|
115 |
except Exception as e:
|
116 |
raise gr.Error(e)
|
117 |
return None
|
118 |
+
|
119 |
+
|
120 |
# Define a function to handle the chat interaction with the AI model
|
121 |
def chat(model, system_message, message, chatbot_messages, history_state):
|
122 |
# Initialize chatbot_messages and history_state if they are not provided
|
123 |
chatbot_messages = chatbot_messages or []
|
124 |
history_state = history_state or []
|
125 |
+
|
126 |
# Try to get the AI's reply using the get_ai_reply function
|
127 |
try:
|
128 |
+
ai_reply = get_ai_reply(
|
129 |
+
message,
|
130 |
+
model=model,
|
131 |
+
system_message=system_message,
|
132 |
+
message_history=history_state,
|
133 |
+
)
|
134 |
except Exception as e:
|
135 |
# If an error occurs, raise a Gradio error
|
136 |
raise gr.Error(e)
|
137 |
+
|
138 |
# Append the user's message and the AI's reply to the chatbot_messages list
|
139 |
chatbot_messages.append((message, ai_reply))
|
140 |
+
|
141 |
# Append the user's message and the AI's reply to the history_state list
|
142 |
history_state.append({"role": "user", "content": message})
|
143 |
history_state.append({"role": "assistant", "content": ai_reply})
|
144 |
+
|
145 |
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
|
146 |
return None, chatbot_messages, history_state
|
147 |
|
148 |
+
|
149 |
# Define a function to launch the chatbot interface using Gradio
|
150 |
def get_chatbot_app(additional_examples=[]):
|
151 |
# Load chatbot examples and merge with any additional examples provided
|
152 |
examples = chatbot_examples.load_examples(additional=additional_examples)
|
153 |
+
|
154 |
# Define a function to get the names of the examples
|
155 |
def get_examples():
|
156 |
return [example["name"] for example in examples]
|
157 |
|
158 |
# Define a function to choose an example based on the index
|
159 |
def choose_example(index):
|
160 |
+
if index != None:
|
161 |
system_message = examples[index]["system_message"].strip()
|
162 |
user_message = examples[index]["message"].strip()
|
163 |
return system_message, user_message, [], []
|
|
|
170 |
with gr.Row():
|
171 |
with gr.Column():
|
172 |
# Create a dropdown to select examples
|
173 |
+
example_dropdown = gr.Dropdown(
|
174 |
+
get_examples(), label="Examples", type="index"
|
175 |
+
)
|
176 |
# Create a button to load the selected example
|
177 |
example_load_btn = gr.Button(value="Load")
|
178 |
# Create a textbox for the system message (prompt)
|
179 |
+
system_message = gr.TextArea(
|
180 |
+
label="System Message (Prompt)",
|
181 |
+
value="You are a helpful assistant.",
|
182 |
+
lines=20,
|
183 |
+
max_lines=400,
|
184 |
+
)
|
185 |
with gr.Column():
|
186 |
# Create a dropdown to select the AI model
|
187 |
model_selector = gr.Dropdown(
|
188 |
+
["gpt-3.5-turbo"], label="Model", value="gpt-3.5-turbo"
|
|
|
|
|
189 |
)
|
190 |
# Create a chatbot interface for the conversation
|
191 |
chatbot = gr.Chatbot(label="Conversation")
|
|
|
197 |
btn = gr.Button(value="Send")
|
198 |
|
199 |
# Connect the example load button to the choose_example function
|
200 |
+
example_load_btn.click(
|
201 |
+
choose_example,
|
202 |
+
inputs=[example_dropdown],
|
203 |
+
outputs=[system_message, message, chatbot, history_state],
|
204 |
+
)
|
205 |
# Connect the send button to the chat function
|
206 |
+
btn.click(
|
207 |
+
chat,
|
208 |
+
inputs=[
|
209 |
+
model_selector,
|
210 |
+
system_message,
|
211 |
+
message,
|
212 |
+
chatbot,
|
213 |
+
history_state,
|
214 |
+
],
|
215 |
+
outputs=[message, chatbot, history_state],
|
216 |
+
)
|
217 |
with gr.Tab("Image Generation"):
|
218 |
+
image_prompt = gr.Textbox(
|
219 |
+
label="Prompt", placeholder="A cute puppy wearing sunglasses."
|
220 |
+
)
|
221 |
image_btn = gr.Button(value="Generate")
|
222 |
image = gr.Image(label="Result", interactive=False, type="filepath")
|
223 |
image_btn.click(generate_image, inputs=[image_prompt], outputs=[image])
|
|
|
225 |
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
|
226 |
transcribe = gr.Button(value="Transcribe")
|
227 |
audio_transcript = gr.Textbox(label="Transcription", interactive=False)
|
228 |
+
transcribe.click(
|
229 |
+
generate_transcription, inputs=[audio_file], outputs=[audio_transcript]
|
230 |
+
)
|
231 |
with gr.Tab("Get API Key"):
|
232 |
email_box = gr.Textbox(label="Email Address", placeholder="Student Email")
|
233 |
+
password_box = gr.Textbox(
|
234 |
+
label="Password", type="password", placeholder="Student ID"
|
235 |
+
)
|
236 |
+
btn = gr.Button(value="Generate")
|
237 |
api_host_box = gr.Textbox(label="OpenAI API Base", interactive=False)
|
238 |
api_key_box = gr.Textbox(label="OpenAI API Key", interactive=False)
|
239 |
+
btn.click(
|
240 |
+
get_api_key,
|
241 |
+
inputs=[email_box, password_box],
|
242 |
+
outputs=[api_host_box, api_key_box],
|
243 |
+
)
|
244 |
# Return the app
|
245 |
return app
|
246 |
|
247 |
+
|
248 |
app = FastAPI()
|
249 |
|
250 |
app.include_router(
|
|
|
261 |
tags=["users"],
|
262 |
)
|
263 |
|
264 |
+
|
265 |
@app.get("/authenticated-route")
|
266 |
async def authenticated_route(user: User = Depends(current_active_user)):
|
267 |
return {"message": f"Hello {user.email}!"}
|
268 |
|
269 |
+
|
270 |
@app.post("/v1/completions")
|
271 |
async def openai_api_completions_passthrough(
|
272 |
request: Request,
|
|
|
289 |
"Authorization": f"Bearer {openai_api_key}",
|
290 |
},
|
291 |
)
|
292 |
+
|
293 |
+
# Forward the request to the OpenAI API
|
294 |
+
async with AsyncClient() as client:
|
295 |
+
response = await client.post(
|
296 |
+
"https://api.openai.com/v1/completions",
|
297 |
+
json=request_data,
|
298 |
+
headers={
|
299 |
+
"Content-Type": request_headers.get("Content-Type"),
|
300 |
+
"Authorization": f"Bearer {openai_api_key}",
|
301 |
+
},
|
302 |
+
)
|
303 |
|
304 |
# Return the OpenAI API response
|
305 |
return response.json()
|
|
|
317 |
request_data = await request.json()
|
318 |
request_headers = request.headers
|
319 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
320 |
+
|
321 |
+
if "gpt-4" in request_data["model"]:
|
322 |
print("User requested gpt-4, falling back to gpt-3.5-turbo")
|
323 |
+
request_data["model"] = "gpt-3.5-turbo"
|
324 |
|
325 |
# Forward the request to the OpenAI API
|
326 |
+
async with AsyncClient() as client:
|
327 |
+
response = await client.post(
|
328 |
+
"https://api.openai.com/v1/chat/completions",
|
329 |
+
json=request_data,
|
330 |
+
headers={
|
331 |
+
"Content-Type": request_headers.get("Content-Type"),
|
332 |
+
"Authorization": f"Bearer {openai_api_key}",
|
333 |
+
},
|
334 |
+
)
|
335 |
|
336 |
# Return the OpenAI API response
|
337 |
return response.json()
|
338 |
|
339 |
+
|
340 |
@app.on_event("startup")
|
341 |
async def on_startup():
|
342 |
# Not needed if you setup a migration system like Alembic
|
343 |
await create_db_and_tables()
|
344 |
+
|
345 |
+
|
346 |
gradio_gui = get_chatbot_app()
|
347 |
gradio_gui.auth = api_login
|
348 |
gradio_gui.auth_message = "Welcome, to the 4341 OpenAI Service"
|