Eric Michael Martinez commited on
Commit
2010315
·
1 Parent(s): fd85e62

update chatinterface

Browse files
Files changed (2) hide show
  1. app/app.py +24 -52
  2. requirements.txt +2 -2
app/app.py CHANGED
@@ -2,13 +2,13 @@ from httpx import AsyncClient
2
  import os
3
  import requests
4
  import gradio as gr
5
- import openai
6
 
7
  from fastapi import Depends, FastAPI, Request
8
  from app.db import User, create_db_and_tables
9
  from app.schemas import UserCreate, UserRead, UserUpdate
10
  from app.users import auth_backend, current_active_user, fastapi_users
11
  from dotenv import load_dotenv
 
12
  import examples as chatbot_examples
13
 
14
  # Get the current environment from the environment variable
@@ -24,6 +24,8 @@ elif current_environment == "prod":
24
  else:
25
  raise ValueError("Invalid environment specified")
26
 
 
 
27
 
28
  def api_login(email, password):
29
  port = os.getenv("APP_PORT")
@@ -119,9 +121,6 @@ def generate_image(prompt):
119
 
120
  # Define a function to handle the chat interaction with the AI model
121
  def chat(message, chatbot_messages, model, temperature, system_message):
122
- # Initialize chatbot_messages
123
- chatbot_messages = chatbot_messages or []
124
-
125
  history_openai_format = []
126
  for human, assistant in chatbot_messages:
127
  history_openai_format.append({"role": "user", "content": human})
@@ -140,11 +139,8 @@ def chat(message, chatbot_messages, model, temperature, system_message):
140
  # If an error occurs, raise a Gradio error
141
  raise gr.Error(e)
142
 
143
- # Append the user's message and the AI's reply to the chatbot_messages list
144
- chatbot_messages.append((message, ai_reply))
145
-
146
  # Return None (empty out the user's message textbox), the updated chatbot_messages
147
- return None, chatbot_messages
148
 
149
 
150
  # Define a function to launch the chatbot interface using Gradio
@@ -169,55 +165,31 @@ def get_chatbot_app(additional_examples=[]):
169
  with gr.Blocks() as app:
170
  with gr.Tab("Conversation"):
171
  with gr.Row():
172
- with gr.Column():
173
- # Create a dropdown to select examples
174
- example_dropdown = gr.Dropdown(
175
- get_examples(), label="Examples", type="index"
176
- )
177
- # Create a button to load the selected example
178
- example_load_btn = gr.Button(value="Load")
179
- # Create a textbox for the system message (prompt)
180
- system_message = gr.TextArea(
181
- label="System Message (Prompt)",
182
- value="You are a helpful assistant.",
183
- lines=20,
184
- max_lines=400,
185
- )
186
- with gr.Column():
187
- with gr.Row():
188
- # Create a dropdown to select the AI model
189
- model_selector = gr.Dropdown(
190
  ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"],
191
  label="Model",
192
  value="gpt-3.5-turbo",
193
- )
194
- temperature_slider = gr.Slider(
195
- label="Temperature", minimum=0, maximum=2, step=0.1, value=0
196
- )
197
- # Create a chatbot interface for the conversation
198
- chatbot = gr.Chatbot(label="Conversation")
199
- # Create a textbox for the user's message
200
- message = gr.Textbox(label="Message")
201
- # Create a button to send the user's message
202
- btn = gr.Button(value="Send")
203
-
204
- # Connect the example load button to the choose_example function
205
- example_load_btn.click(
206
- choose_example,
207
- inputs=[example_dropdown],
208
- outputs=[system_message, message, chatbot],
209
- )
210
- # Connect the send button to the chat function
211
- btn.click(
212
- chat,
213
- inputs=[
214
- message,
215
- chatbot,
216
- model_selector,
217
- temperature_slider,
218
  system_message,
219
  ],
220
- outputs=[message, chatbot],
221
  )
222
  with gr.Tab("Image Generation"):
223
  image_prompt = gr.Textbox(
 
2
  import os
3
  import requests
4
  import gradio as gr
 
5
 
6
  from fastapi import Depends, FastAPI, Request
7
  from app.db import User, create_db_and_tables
8
  from app.schemas import UserCreate, UserRead, UserUpdate
9
  from app.users import auth_backend, current_active_user, fastapi_users
10
  from dotenv import load_dotenv
11
+
12
  import examples as chatbot_examples
13
 
14
  # Get the current environment from the environment variable
 
24
  else:
25
  raise ValueError("Invalid environment specified")
26
 
27
+ import openai
28
+
29
 
30
  def api_login(email, password):
31
  port = os.getenv("APP_PORT")
 
121
 
122
  # Define a function to handle the chat interaction with the AI model
123
  def chat(message, chatbot_messages, model, temperature, system_message):
 
 
 
124
  history_openai_format = []
125
  for human, assistant in chatbot_messages:
126
  history_openai_format.append({"role": "user", "content": human})
 
139
  # If an error occurs, raise a Gradio error
140
  raise gr.Error(e)
141
 
 
 
 
142
  # Return None (empty out the user's message textbox), the updated chatbot_messages
143
+ return ai_reply
144
 
145
 
146
  # Define a function to launch the chatbot interface using Gradio
 
165
  with gr.Blocks() as app:
166
  with gr.Tab("Conversation"):
167
  with gr.Row():
168
+ # Create a textbox for the system message (prompt)
169
+ system_message = gr.TextArea(
170
+ label="System Message (Prompt)",
171
+ value="You are a helpful assistant.",
172
+ lines=20,
173
+ max_lines=400,
174
+ )
175
+ # Create a chatbot interface for the conversation
176
+ chatbot = gr.ChatInterface(
177
+ chat,
178
+ additional_inputs=[
179
+ gr.Dropdown(
 
 
 
 
 
 
180
  ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"],
181
  label="Model",
182
  value="gpt-3.5-turbo",
183
+ ),
184
+ gr.Slider(
185
+ label="Temperature",
186
+ minimum=0,
187
+ maximum=2,
188
+ step=0.1,
189
+ value=0,
190
+ ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  system_message,
192
  ],
 
193
  )
194
  with gr.Tab("Image Generation"):
195
  image_prompt = gr.Textbox(
requirements.txt CHANGED
@@ -1,10 +1,10 @@
1
  fastapi
2
  fastapi-users[sqlalchemy]
3
- gradio
4
  httpx
5
  openai
6
  python-dotenv
7
  Requests
8
- SQLAlchemy
9
  uvicorn
10
  asyncpg
 
1
  fastapi
2
  fastapi-users[sqlalchemy]
3
+ gradio==3.44.4
4
  httpx
5
  openai
6
  python-dotenv
7
  Requests
8
+ sqlalchemy[asyncio]
9
  uvicorn
10
  asyncpg