File size: 5,827 Bytes
6731167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import openai
import examples as chatbot_examples
from dotenv import load_dotenv
import os

load_dotenv()  # take environment variables from .env.

# In order to authenticate, secrets must have been set, and the user supplied credentials match
def auth(username, password):
    app_username = os.getenv("APP_USERNAME")
    app_password = os.getenv("APP_PASSWORD")

    if app_username and app_password:
        if(username == app_username and password == app_password):
            print("Logged in successfully.")
            return True
        else:
            print("Username or password does not match.")
    else:
        print("Credential secrets not set.")
    return False
    
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]):
    # Initialize the messages list
    messages = []
    
    # Add the system message to the messages list
    if system_message is not None:
        messages += [{"role": "system", "content": system_message}]

    # Add the message history to the messages list
    if message_history is not None:
        messages += message_history
    
    # Add the user's message to the messages list
    messages += [{"role": "user", "content": message}]
    
    # Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
    completion = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature
    )
    
    # Extract and return the AI's response from the API response
    return completion.choices[0].message.content.strip()

# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
    # Initialize chatbot_messages and history_state if they are not provided
    chatbot_messages = chatbot_messages or []
    history_state = history_state or []
    
    # Try to get the AI's reply using the get_ai_reply function
    try:
        ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)
            
        # Append the user's message and the AI's reply to the chatbot_messages list
        chatbot_messages.append((message, ai_reply))

        # Append the user's message and the AI's reply to the history_state list
        history_state.append({"role": "user", "content": message})
        history_state.append({"role": "assistant", "content": ai_reply})

        # Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
    except Exception as e:
        # If an error occurs, raise a Gradio error
        raise gr.Error(e)
        
    return None, chatbot_messages, history_state

# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
    # Load chatbot examples and merge with any additional examples provided
    examples = chatbot_examples.load_examples(additional=additional_examples)
    
    # Define a function to get the names of the examples
    def get_examples():
        return [example["name"] for example in examples]

    # Define a function to choose an example based on the index
    def choose_example(index):
        if(index!=None):
            system_message = examples[index]["system_message"].strip()
            user_message = examples[index]["message"].strip()
            return system_message, user_message, [], []
        else:
            return "", "", [], []

    # Create the Gradio interface using the Blocks layout
    with gr.Blocks() as app:
        with gr.Tab("Conversation"):
            with gr.Row():
                with gr.Column():
                    # Create a dropdown to select examples
                    example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
                    # Create a button to load the selected example
                    example_load_btn = gr.Button(value="Load")
                    # Create a textbox for the system message (prompt)
                    system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.")
                with gr.Column():
                    # Create a dropdown to select the AI model
                    model_selector = gr.Dropdown(
                        ["gpt-3.5-turbo"],
                        label="Model",
                        value="gpt-3.5-turbo"
                    )
                    # Create a chatbot interface for the conversation
                    chatbot = gr.Chatbot(label="Conversation")
                    # Create a textbox for the user's message
                    message = gr.Textbox(label="Message")
                    # Create a state object to store the conversation history
                    history_state = gr.State()
                    # Create a button to send the user's message
                    btn = gr.Button(value="Send")

                # Connect the example load button to the choose_example function
                example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
                # Connect the send button to the chat function
                btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
        # Return the app
        return app
        
# Call the launch_chatbot function to start the chatbot interface using Gradio
# Set the share parameter to False, meaning the interface will not be publicly accessible
app = get_chatbot_app()
app.queue()  # this is to be able to queue multiple requests at once
app.launch(auth=auth)