Spaces:
Runtime error
Runtime error
File size: 15,437 Bytes
f389e2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
{
"cells": [
{
"cell_type": "markdown",
"id": "8ec2fef2",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Deploying a Chatbot to the Web\n",
"* **Created by:** Eric Martinez\n",
"* **For:** Software Engineering 2\n",
"* **At:** University of Texas Rio-Grande Valley"
]
},
{
"cell_type": "markdown",
"id": "ffb051ff",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## HuggingFace\n",
"\n",
"HuggingFace is an AI research organization and platform that provides access to a wide range of pre-trained LLMs and tools for training, fine-tuning, and deploying models. It has a user-friendly interface and a large community, making it a popular choice for working with LLMs."
]
},
{
"cell_type": "markdown",
"id": "8b3aec8b",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Deploying to HuggingFace"
]
},
{
"cell_type": "markdown",
"id": "7804a8ce",
"metadata": {},
"source": [
"#### Configuring the files required"
]
},
{
"cell_type": "markdown",
"id": "60c8e7f6",
"metadata": {},
"source": [
"Let's face it! Once we start building cool stuff we are going to want to show it off. It can take us < 10 minutes to deploy our chatbots and LLM applications when using Gradio!"
]
},
{
"cell_type": "markdown",
"id": "54de0ddc",
"metadata": {},
"source": [
"Add a username and password for your app to your `.env` file. This will ensure that unauthorized users are not able to access LLM features. Use the following format:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95dec7cf",
"metadata": {},
"outputs": [],
"source": [
"APP_USERNAME=<whatever username you want>\n",
"APP_PASSWORD=<whatever password you want>"
]
},
{
"cell_type": "markdown",
"id": "5072dc21",
"metadata": {},
"source": [
"Let's start by taking all of our necessary chatbot code into one file which we will name `app.py`. Run the following cell to automatically write it!"
]
},
{
"cell_type": "markdown",
"id": "aacdcaaf",
"metadata": {},
"source": [
"Take note that this code has been altered a little bit from the last chatbot example in order to add authentication."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "710b66f7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting app.py\n"
]
}
],
"source": [
"%%writefile app.py\n",
"import gradio as gr\n",
"import openai\n",
"import examples as chatbot_examples\n",
"from dotenv import load_dotenv\n",
"import os\n",
"\n",
"load_dotenv() # take environment variables from .env.\n",
"\n",
"# In order to authenticate, secrets must have been set, and the user supplied credentials match\n",
"def auth(username, password):\n",
" app_username = os.getenv(\"APP_USERNAME\")\n",
" app_password = os.getenv(\"APP_PASSWORD\")\n",
"\n",
" if app_username and app_password:\n",
" if(username == app_username and password == app_password):\n",
" print(\"Logged in successfully.\")\n",
" return True\n",
" else:\n",
" print(\"Username or password does not match.\")\n",
" else:\n",
" print(\"Credential secrets not set.\")\n",
" return False\n",
" \n",
"# Define a function to get the AI's reply using the OpenAI API\n",
"def get_ai_reply(message, model=\"gpt-3.5-turbo\", system_message=None, temperature=0, message_history=[]):\n",
" # Initialize the messages list\n",
" messages = []\n",
" \n",
" # Add the system message to the messages list\n",
" if system_message is not None:\n",
" messages += [{\"role\": \"system\", \"content\": system_message}]\n",
"\n",
" # Add the message history to the messages list\n",
" if message_history is not None:\n",
" messages += message_history\n",
" \n",
" # Add the user's message to the messages list\n",
" messages += [{\"role\": \"user\", \"content\": message}]\n",
" \n",
" # Make an API call to the OpenAI ChatCompletion endpoint with the model and messages\n",
" completion = openai.ChatCompletion.create(\n",
" model=model,\n",
" messages=messages,\n",
" temperature=temperature\n",
" )\n",
" \n",
" # Extract and return the AI's response from the API response\n",
" return completion.choices[0].message.content.strip()\n",
"\n",
"# Define a function to handle the chat interaction with the AI model\n",
"def chat(model, system_message, message, chatbot_messages, history_state):\n",
" # Initialize chatbot_messages and history_state if they are not provided\n",
" chatbot_messages = chatbot_messages or []\n",
" history_state = history_state or []\n",
" \n",
" # Try to get the AI's reply using the get_ai_reply function\n",
" try:\n",
" ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)\n",
" except Exception as e:\n",
" # If an error occurs, raise a Gradio error\n",
" raise gr.Error(e)\n",
" \n",
" # Append the user's message and the AI's reply to the chatbot_messages list\n",
" chatbot_messages.append((message, ai_reply))\n",
" \n",
" # Append the user's message and the AI's reply to the history_state list\n",
" history_state.append({\"role\": \"user\", \"content\": message})\n",
" history_state.append({\"role\": \"assistant\", \"content\": ai_reply})\n",
" \n",
" # Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state\n",
" return None, chatbot_messages, history_state\n",
"\n",
"# Define a function to launch the chatbot interface using Gradio\n",
"def get_chatbot_app(additional_examples=[]):\n",
" # Load chatbot examples and merge with any additional examples provided\n",
" examples = chatbot_examples.load_examples(additional=additional_examples)\n",
" \n",
" # Define a function to get the names of the examples\n",
" def get_examples():\n",
" return [example[\"name\"] for example in examples]\n",
"\n",
" # Define a function to choose an example based on the index\n",
" def choose_example(index):\n",
" if(index!=None):\n",
" system_message = examples[index][\"system_message\"].strip()\n",
" user_message = examples[index][\"message\"].strip()\n",
" return system_message, user_message, [], []\n",
" else:\n",
" return \"\", \"\", [], []\n",
"\n",
" # Create the Gradio interface using the Blocks layout\n",
" with gr.Blocks() as app:\n",
" with gr.Tab(\"Conversation\"):\n",
" with gr.Row():\n",
" with gr.Column():\n",
" # Create a dropdown to select examples\n",
" example_dropdown = gr.Dropdown(get_examples(), label=\"Examples\", type=\"index\")\n",
" # Create a button to load the selected example\n",
" example_load_btn = gr.Button(value=\"Load\")\n",
" # Create a textbox for the system message (prompt)\n",
" system_message = gr.Textbox(label=\"System Message (Prompt)\", value=\"You are a helpful assistant.\")\n",
" with gr.Column():\n",
" # Create a dropdown to select the AI model\n",
" model_selector = gr.Dropdown(\n",
" [\"gpt-3.5-turbo\"],\n",
" label=\"Model\",\n",
" value=\"gpt-3.5-turbo\"\n",
" )\n",
" # Create a chatbot interface for the conversation\n",
" chatbot = gr.Chatbot(label=\"Conversation\")\n",
" # Create a textbox for the user's message\n",
" message = gr.Textbox(label=\"Message\")\n",
" # Create a state object to store the conversation history\n",
" history_state = gr.State()\n",
" # Create a button to send the user's message\n",
" btn = gr.Button(value=\"Send\")\n",
"\n",
" # Connect the example load button to the choose_example function\n",
" example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])\n",
" # Connect the send button to the chat function\n",
" btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])\n",
" # Return the app\n",
" return app\n",
" \n",
"# Call the launch_chatbot function to start the chatbot interface using Gradio\n",
"# Set the share parameter to False, meaning the interface will not be publicly accessible\n",
"app = get_chatbot_app((\n",
"app.queue() # <-- Sets up a queue with default parameters\n",
" \n",
"launch(auth=auth)"
]
},
{
"cell_type": "markdown",
"id": "6d75af66",
"metadata": {},
"source": [
"We will also need a `requirements.txt` file to store the list of the packages that HuggingFace needs to install to run our chatbot."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "14d0e434",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting requirements.txt\n"
]
}
],
"source": [
"%%writefile requirements.txt\n",
"gradio == 3.27.0\n",
"openai == 0.27.4\n",
"python-dotenv == 1.0.0"
]
},
{
"cell_type": "markdown",
"id": "4debec45",
"metadata": {},
"source": [
"Now let's go ahead and commit our changes"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "14d42a96",
"metadata": {},
"outputs": [],
"source": [
"!git add app.py"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d7c5b127",
"metadata": {},
"outputs": [],
"source": [
"!git add requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "18960d9f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[master (root-commit) 39899ef] adding chatbot\r\n",
" 2 files changed, 101 insertions(+)\r\n",
" create mode 100644 app.py\r\n",
" create mode 100644 requirements.txt\r\n"
]
}
],
"source": [
"!git commit -m \"adding chatbot\""
]
},
{
"cell_type": "markdown",
"id": "09221ee0",
"metadata": {},
"source": [
"#### Using HuggingFace Spaces"
]
},
{
"cell_type": "markdown",
"id": "db789c94",
"metadata": {},
"source": [
"As mentioned before, HuggingFace is a free-to-use platform for hosting AI demos and apps. We will need to make a HuggingFace _Space_ for our chatbot."
]
},
{
"cell_type": "markdown",
"id": "d9eedd10",
"metadata": {},
"source": [
"First sign up for a free HuggingFace account [here](https://huggingface.co/join). After you sign up, create a new Space by clicking \"New Space\" on the navigation menu (press on your profile image)."
]
},
{
"cell_type": "markdown",
"id": "3e042d24",
"metadata": {},
"source": [
"#### Generate a HuggingFace Access Token"
]
},
{
"cell_type": "markdown",
"id": "a7d0781d",
"metadata": {},
"source": [
"#### Login to HuggingFace Hub"
]
},
{
"cell_type": "markdown",
"id": "eba83252",
"metadata": {},
"source": [
"Install `huggingface_hub`"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "266bf481",
"metadata": {},
"outputs": [],
"source": [
"!pip -q install --upgrade huggingface_hub"
]
},
{
"cell_type": "markdown",
"id": "d50cd84b",
"metadata": {},
"source": [
"Login to HuggingFace"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "53fd5037",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Token is valid.\n",
"Your token has been saved in your configured git credential helpers (osxkeychain).\n",
"Your token has been saved to /Users/ericmartinez/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"from huggingface_hub import notebook_login\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"id": "90f9bd4d",
"metadata": {},
"source": [
"#### Now lets setup git and HuggingFace Spaces to work together and deploy"
]
},
{
"cell_type": "markdown",
"id": "66468481",
"metadata": {},
"source": [
"<span style=\"color:red\">REPLACE MY URL WITH YOURS</span>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "827a201d",
"metadata": {},
"outputs": [],
"source": [
"!git remote add huggingface https://huggingface.co/spaces/ericmichael/gradio-chatbot-demo"
]
},
{
"cell_type": "markdown",
"id": "f8b3bb3d",
"metadata": {},
"source": [
"Then force push to sync everything for the first time."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "86c9ee4e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total 0 (delta 0), reused 0 (delta 0), pack-reused 0\n",
"To https://huggingface.co/spaces/ericmichael/gradio-chatbot-demo\n",
" + 8911ec0...3693bcc main -> main (forced update)\n"
]
}
],
"source": [
"!git push --force huggingface main"
]
},
{
"cell_type": "markdown",
"id": "3a353ebf",
"metadata": {},
"source": [
"That's it! 🎉 Check your HuggingFace Space URL to access your chatbot!"
]
},
{
"cell_type": "markdown",
"id": "5a54132b",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Deploying using FastAPI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "181dd4ad",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|