File size: 15,437 Bytes
f389e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8ec2fef2",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Deploying a Chatbot to the Web\n",
    "* **Created by:** Eric Martinez\n",
    "* **For:** Software Engineering 2\n",
    "* **At:** University of Texas Rio-Grande Valley"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ffb051ff",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## HuggingFace\n",
    "\n",
    "HuggingFace is an AI research organization and platform that provides access to a wide range of pre-trained LLMs and tools for training, fine-tuning, and deploying models. It has a user-friendly interface and a large community, making it a popular choice for working with LLMs."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b3aec8b",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Deploying to HuggingFace"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7804a8ce",
   "metadata": {},
   "source": [
    "#### Configuring the files required"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60c8e7f6",
   "metadata": {},
   "source": [
    "Let's face it! Once we start building cool stuff we are going to want to show it off. It can take us < 10 minutes to deploy our chatbots and LLM applications when using Gradio!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54de0ddc",
   "metadata": {},
   "source": [
    "Add a username and password for your app to your `.env` file. This will ensure that unauthorized users are not able to access LLM features. Use the following format:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "95dec7cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "APP_USERNAME=<whatever username you want>\n",
    "APP_PASSWORD=<whatever password you want>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5072dc21",
   "metadata": {},
   "source": [
    "Let's start by taking all of our necessary chatbot code into one file which we will name `app.py`. Run the following cell to automatically write it!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aacdcaaf",
   "metadata": {},
   "source": [
    "Take note that this code has been altered a little bit from the last chatbot example in order to add authentication."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "710b66f7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting app.py\n"
     ]
    }
   ],
   "source": [
    "%%writefile app.py\n",
    "import gradio as gr\n",
    "import openai\n",
    "import examples as chatbot_examples\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "\n",
    "load_dotenv()  # take environment variables from .env.\n",
    "\n",
    "# In order to authenticate, secrets must have been set, and the user supplied credentials match\n",
    "def auth(username, password):\n",
    "    app_username = os.getenv(\"APP_USERNAME\")\n",
    "    app_password = os.getenv(\"APP_PASSWORD\")\n",
    "\n",
    "    if app_username and app_password:\n",
    "        if(username == app_username and password == app_password):\n",
    "            print(\"Logged in successfully.\")\n",
    "            return True\n",
    "        else:\n",
    "            print(\"Username or password does not match.\")\n",
    "    else:\n",
    "        print(\"Credential secrets not set.\")\n",
    "    return False\n",
    "    \n",
    "# Define a function to get the AI's reply using the OpenAI API\n",
    "def get_ai_reply(message, model=\"gpt-3.5-turbo\", system_message=None, temperature=0, message_history=[]):\n",
    "    # Initialize the messages list\n",
    "    messages = []\n",
    "    \n",
    "    # Add the system message to the messages list\n",
    "    if system_message is not None:\n",
    "        messages += [{\"role\": \"system\", \"content\": system_message}]\n",
    "\n",
    "    # Add the message history to the messages list\n",
    "    if message_history is not None:\n",
    "        messages += message_history\n",
    "    \n",
    "    # Add the user's message to the messages list\n",
    "    messages += [{\"role\": \"user\", \"content\": message}]\n",
    "    \n",
    "    # Make an API call to the OpenAI ChatCompletion endpoint with the model and messages\n",
    "    completion = openai.ChatCompletion.create(\n",
    "        model=model,\n",
    "        messages=messages,\n",
    "        temperature=temperature\n",
    "    )\n",
    "    \n",
    "    # Extract and return the AI's response from the API response\n",
    "    return completion.choices[0].message.content.strip()\n",
    "\n",
    "# Define a function to handle the chat interaction with the AI model\n",
    "def chat(model, system_message, message, chatbot_messages, history_state):\n",
    "    # Initialize chatbot_messages and history_state if they are not provided\n",
    "    chatbot_messages = chatbot_messages or []\n",
    "    history_state = history_state or []\n",
    "    \n",
    "    # Try to get the AI's reply using the get_ai_reply function\n",
    "    try:\n",
    "        ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)\n",
    "    except Exception as e:\n",
    "        # If an error occurs, raise a Gradio error\n",
    "        raise gr.Error(e)\n",
    "    \n",
    "    # Append the user's message and the AI's reply to the chatbot_messages list\n",
    "    chatbot_messages.append((message, ai_reply))\n",
    "    \n",
    "    # Append the user's message and the AI's reply to the history_state list\n",
    "    history_state.append({\"role\": \"user\", \"content\": message})\n",
    "    history_state.append({\"role\": \"assistant\", \"content\": ai_reply})\n",
    "    \n",
    "    # Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state\n",
    "    return None, chatbot_messages, history_state\n",
    "\n",
    "# Define a function to launch the chatbot interface using Gradio\n",
    "def get_chatbot_app(additional_examples=[]):\n",
    "    # Load chatbot examples and merge with any additional examples provided\n",
    "    examples = chatbot_examples.load_examples(additional=additional_examples)\n",
    "    \n",
    "    # Define a function to get the names of the examples\n",
    "    def get_examples():\n",
    "        return [example[\"name\"] for example in examples]\n",
    "\n",
    "    # Define a function to choose an example based on the index\n",
    "    def choose_example(index):\n",
    "        if(index!=None):\n",
    "            system_message = examples[index][\"system_message\"].strip()\n",
    "            user_message = examples[index][\"message\"].strip()\n",
    "            return system_message, user_message, [], []\n",
    "        else:\n",
    "            return \"\", \"\", [], []\n",
    "\n",
    "    # Create the Gradio interface using the Blocks layout\n",
    "    with gr.Blocks() as app:\n",
    "        with gr.Tab(\"Conversation\"):\n",
    "            with gr.Row():\n",
    "                with gr.Column():\n",
    "                    # Create a dropdown to select examples\n",
    "                    example_dropdown = gr.Dropdown(get_examples(), label=\"Examples\", type=\"index\")\n",
    "                    # Create a button to load the selected example\n",
    "                    example_load_btn = gr.Button(value=\"Load\")\n",
    "                    # Create a textbox for the system message (prompt)\n",
    "                    system_message = gr.Textbox(label=\"System Message (Prompt)\", value=\"You are a helpful assistant.\")\n",
    "                with gr.Column():\n",
    "                    # Create a dropdown to select the AI model\n",
    "                    model_selector = gr.Dropdown(\n",
    "                        [\"gpt-3.5-turbo\"],\n",
    "                        label=\"Model\",\n",
    "                        value=\"gpt-3.5-turbo\"\n",
    "                    )\n",
    "                    # Create a chatbot interface for the conversation\n",
    "                    chatbot = gr.Chatbot(label=\"Conversation\")\n",
    "                    # Create a textbox for the user's message\n",
    "                    message = gr.Textbox(label=\"Message\")\n",
    "                    # Create a state object to store the conversation history\n",
    "                    history_state = gr.State()\n",
    "                    # Create a button to send the user's message\n",
    "                    btn = gr.Button(value=\"Send\")\n",
    "\n",
    "                # Connect the example load button to the choose_example function\n",
    "                example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])\n",
    "                # Connect the send button to the chat function\n",
    "                btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])\n",
    "        # Return the app\n",
    "        return app\n",
    "        \n",
    "# Call the launch_chatbot function to start the chatbot interface using Gradio\n",
    "# Set the share parameter to False, meaning the interface will not be publicly accessible\n",
    "app = get_chatbot_app((\n",
    "app.queue()  # <-- Sets up a queue with default parameters\n",
    "    \n",
    "launch(auth=auth)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d75af66",
   "metadata": {},
   "source": [
    "We will also need a `requirements.txt` file to store the list of the packages that HuggingFace needs to install to run our chatbot."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "14d0e434",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting requirements.txt\n"
     ]
    }
   ],
   "source": [
    "%%writefile requirements.txt\n",
    "gradio == 3.27.0\n",
    "openai == 0.27.4\n",
    "python-dotenv == 1.0.0"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4debec45",
   "metadata": {},
   "source": [
    "Now let's go ahead and commit our changes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "14d42a96",
   "metadata": {},
   "outputs": [],
   "source": [
    "!git add app.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d7c5b127",
   "metadata": {},
   "outputs": [],
   "source": [
    "!git add requirements.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "18960d9f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[master (root-commit) 39899ef] adding chatbot\r\n",
      " 2 files changed, 101 insertions(+)\r\n",
      " create mode 100644 app.py\r\n",
      " create mode 100644 requirements.txt\r\n"
     ]
    }
   ],
   "source": [
    "!git commit -m \"adding chatbot\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09221ee0",
   "metadata": {},
   "source": [
    "#### Using HuggingFace Spaces"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db789c94",
   "metadata": {},
   "source": [
    "As mentioned before, HuggingFace is a free-to-use platform for hosting AI demos and apps. We will need to make a HuggingFace _Space_ for our chatbot."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d9eedd10",
   "metadata": {},
   "source": [
    "First sign up for a free HuggingFace account [here](https://huggingface.co/join). After you sign up, create a new Space by clicking \"New Space\" on the navigation menu (press on your profile image)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e042d24",
   "metadata": {},
   "source": [
    "#### Generate a HuggingFace Access Token"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a7d0781d",
   "metadata": {},
   "source": [
    "#### Login to HuggingFace Hub"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "eba83252",
   "metadata": {},
   "source": [
    "Install `huggingface_hub`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "266bf481",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip -q install --upgrade huggingface_hub"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d50cd84b",
   "metadata": {},
   "source": [
    "Login to HuggingFace"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "53fd5037",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Token is valid.\n",
      "Your token has been saved in your configured git credential helpers (osxkeychain).\n",
      "Your token has been saved to /Users/ericmartinez/.cache/huggingface/token\n",
      "Login successful\n"
     ]
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "90f9bd4d",
   "metadata": {},
   "source": [
    "#### Now lets setup git and HuggingFace Spaces to work together and deploy"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "66468481",
   "metadata": {},
   "source": [
    "<span style=\"color:red\">REPLACE MY URL WITH YOURS</span>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "827a201d",
   "metadata": {},
   "outputs": [],
   "source": [
    "!git remote add huggingface https://huggingface.co/spaces/ericmichael/gradio-chatbot-demo"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f8b3bb3d",
   "metadata": {},
   "source": [
    "Then force push to sync everything for the first time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "86c9ee4e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total 0 (delta 0), reused 0 (delta 0), pack-reused 0\n",
      "To https://huggingface.co/spaces/ericmichael/gradio-chatbot-demo\n",
      " + 8911ec0...3693bcc main -> main (forced update)\n"
     ]
    }
   ],
   "source": [
    "!git push --force huggingface main"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3a353ebf",
   "metadata": {},
   "source": [
    "That's it! 🎉 Check your HuggingFace Space URL to access your chatbot!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5a54132b",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Deploying using FastAPI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "181dd4ad",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "celltoolbar": "Raw Cell Format",
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}