Spaces:
Runtime error
Runtime error
File size: 5,794 Bytes
39899ef e84431c 39899ef e84431c 484ce68 e84431c 88268be e84431c 39899ef e84431c 39899ef e84431c 39899ef e84431c 39899ef e84431c 39899ef e84431c 484ce68 e84431c 39899ef bd0ba0a 39899ef 484ce68 39899ef bd0ba0a 39899ef 5e16c68 39899ef 484ce68 bd0ba0a 39899ef c22fd38 d781ef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import openai
import examples as chatbot_examples
from dotenv import load_dotenv
import os
load_dotenv() # take environment variables from .env.
# In order to authenticate, secrets must have been set, and the user supplied credentials match
def auth(username, password):
app_username = os.getenv("APP_USERNAME")
app_password = os.getenv("APP_PASSWORD")
if app_username and app_password:
if(username == app_username and password == app_password):
print("Logged in successfully.")
return True
else:
print("Username or password does not match.")
else:
print("Credential secrets not set.")
return False
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]):
# Initialize the messages list
messages = []
# Add the system message to the messages list
if system_message is not None:
messages += [{"role": "system", "content": system_message}]
# Add the message history to the messages list
if message_history is not None:
messages += message_history
# Add the user's message to the messages list
messages += [{"role": "user", "content": message}]
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature
)
# Extract and return the AI's response from the API response
return completion.choices[0].message.content.strip()
# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
# Initialize chatbot_messages and history_state if they are not provided
chatbot_messages = chatbot_messages or []
history_state = history_state or []
# Try to get the AI's reply using the get_ai_reply function
try:
ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)
except Exception as e:
# If an error occurs, raise a Gradio error
raise gr.Error(e)
# Append the user's message and the AI's reply to the chatbot_messages list
chatbot_messages.append((message, ai_reply))
# Append the user's message and the AI's reply to the history_state list
history_state.append({"role": "user", "content": message})
history_state.append({"role": "assistant", "content": ai_reply})
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
return None, chatbot_messages, history_state
# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
# Load chatbot examples and merge with any additional examples provided
examples = chatbot_examples.load_examples(additional=additional_examples)
# Define a function to get the names of the examples
def get_examples():
return [example["name"] for example in examples]
# Define a function to choose an example based on the index
def choose_example(index):
if(index!=None):
system_message = examples[index]["system_message"].strip()
user_message = examples[index]["message"].strip()
return system_message, user_message, [], []
else:
return "", "", [], []
# Create the Gradio interface using the Blocks layout
with gr.Blocks() as app:
with gr.Tab("Conversation"):
with gr.Row():
with gr.Column():
# Create a dropdown to select examples
example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
# Create a button to load the selected example
example_load_btn = gr.Button(value="Load")
# Create a textbox for the system message (prompt)
system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.")
with gr.Column():
# Create a dropdown to select the AI model
model_selector = gr.Dropdown(
["gpt-3.5-turbo"],
label="Model",
value="gpt-3.5-turbo"
)
# Create a chatbot interface for the conversation
chatbot = gr.Chatbot(label="Conversation")
# Create a textbox for the user's message
message = gr.Textbox(label="Message")
# Create a state object to store the conversation history
history_state = gr.State()
# Create a button to send the user's message
btn = gr.Button(value="Send")
# Connect the example load button to the choose_example function
example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
# Connect the send button to the chat function
btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
# Return the app
return app
# Call the launch_chatbot function to start the chatbot interface using Gradio
# Set the share parameter to False, meaning the interface will not be publicly accessible
app = get_chatbot_app()
app.queue() # this is to be able to queue multiple requests at once
app.launch(auth=auth)
|