Spaces:
Runtime error
Runtime error
Charles Lin
commited on
Commit
·
9b78f9c
1
Parent(s):
bb4bb43
Generation working. Todo: model edits; add model checkpoints. Also, we are only loading an editable model upon switching algs but we should load it when the page loads
Browse files- algs/serac.py +4 -2
- app.py +15 -4
algs/serac.py
CHANGED
@@ -306,13 +306,15 @@ class SERAC(EditableModel):
|
|
306 |
|
307 |
def generate(self, *args, **kwargs):
|
308 |
# input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
|
|
|
|
|
309 |
base_generate_fn = (
|
310 |
self.model.forward if type(self.model) == BertClassifier
|
311 |
-
else lambda *args, **kwargs: self.model.generate(*args, **kwargs
|
312 |
)
|
313 |
cntr_generate_fn = (
|
314 |
self.replacement.forward if type(self.replacement) == BertClassifier
|
315 |
-
else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs
|
316 |
)
|
317 |
|
318 |
# assert len(args) == 0, "Should only pass named arguments to generate()"
|
|
|
306 |
|
307 |
def generate(self, *args, **kwargs):
|
308 |
# input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
|
309 |
+
if "max_new_tokens" not in kwargs:
|
310 |
+
kwargs["max_new_tokens"] = 20
|
311 |
base_generate_fn = (
|
312 |
self.model.forward if type(self.model) == BertClassifier
|
313 |
+
else lambda *args, **kwargs: self.model.generate(*args, **kwargs)
|
314 |
)
|
315 |
cntr_generate_fn = (
|
316 |
self.replacement.forward if type(self.replacement) == BertClassifier
|
317 |
+
else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs)
|
318 |
)
|
319 |
|
320 |
# assert len(args) == 0, "Should only pass named arguments to generate()"
|
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import time
|
4 |
import importlib
|
|
|
5 |
|
6 |
import algs
|
7 |
import config
|
@@ -17,6 +18,11 @@ EDIT_ALGS = [
|
|
17 |
"LU: Lookup Cache",
|
18 |
]
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def reset():
|
21 |
st.session_state.edits.drop(st.session_state.edits.index, inplace=True)
|
22 |
st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True)
|
@@ -28,10 +34,10 @@ def reset():
|
|
28 |
alg_abbrv = selected_alg[:selected_alg.index(":")]
|
29 |
alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}")
|
30 |
alg_class = getattr(alg_module, alg_abbrv.upper())
|
31 |
-
|
32 |
st.session_state.editable_model = alg_class(
|
33 |
st.session_state.model,
|
34 |
-
|
35 |
lambda: copy.deepcopy(st.session_state.model),
|
36 |
).eval()
|
37 |
|
@@ -42,7 +48,10 @@ def apply_edit():
|
|
42 |
|
43 |
def sample_model():
|
44 |
input_str = str(test_input)
|
45 |
-
|
|
|
|
|
|
|
46 |
n_edits = len(st.session_state.edits)
|
47 |
alg_name = st.session_state.alg_selector
|
48 |
alg_abbrv = alg_name[:alg_name.index(":")]
|
@@ -55,9 +64,11 @@ if "init" not in st.session_state:
|
|
55 |
st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"])
|
56 |
st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"])
|
57 |
st.session_state.init = True
|
|
|
|
|
58 |
with st.spinner('Loading model...'):
|
59 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq")
|
60 |
-
st.session_state.model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq").eval()
|
61 |
st.session_state.editable_model = None
|
62 |
|
63 |
########################
|
|
|
2 |
import pandas as pd
|
3 |
import time
|
4 |
import importlib
|
5 |
+
from torch.cuda import is_available as use_cuda
|
6 |
|
7 |
import algs
|
8 |
import config
|
|
|
18 |
"LU: Lookup Cache",
|
19 |
]
|
20 |
|
21 |
+
def generate(ids):
|
22 |
+
output_ids = st.session_state.editable_model.generate(input_ids=ids, max_new_tokens=20, min_length=1,
|
23 |
+
num_return_sequences=1, num_beams=3)
|
24 |
+
return st.session_state.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
25 |
+
|
26 |
def reset():
|
27 |
st.session_state.edits.drop(st.session_state.edits.index, inplace=True)
|
28 |
st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True)
|
|
|
34 |
alg_abbrv = selected_alg[:selected_alg.index(":")]
|
35 |
alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}")
|
36 |
alg_class = getattr(alg_module, alg_abbrv.upper())
|
37 |
+
st.session_state.config = getattr(config, f"{alg_abbrv.lower()}_config")
|
38 |
st.session_state.editable_model = alg_class(
|
39 |
st.session_state.model,
|
40 |
+
st.session_state.config,
|
41 |
lambda: copy.deepcopy(st.session_state.model),
|
42 |
).eval()
|
43 |
|
|
|
48 |
|
49 |
def sample_model():
|
50 |
input_str = str(test_input)
|
51 |
+
with st.spinner('Generating completion...'):
|
52 |
+
encoding = st.session_state.tokenizer(input_str, return_tensors="pt")
|
53 |
+
ids = encoding["input_ids"].to(st.session_state.device)
|
54 |
+
model_output = generate(ids)
|
55 |
n_edits = len(st.session_state.edits)
|
56 |
alg_name = st.session_state.alg_selector
|
57 |
alg_abbrv = alg_name[:alg_name.index(":")]
|
|
|
64 |
st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"])
|
65 |
st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"])
|
66 |
st.session_state.init = True
|
67 |
+
st.session_state.config = None
|
68 |
+
st.session_state.device = "cuda" if use_cuda() else "cpu"
|
69 |
with st.spinner('Loading model...'):
|
70 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq")
|
71 |
+
st.session_state.model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq").to(st.session_state.device).eval()
|
72 |
st.session_state.editable_model = None
|
73 |
|
74 |
########################
|