Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,10 +11,12 @@ story_tokenizer = AutoTokenizer.from_pretrained(story_model_name)
|
|
| 11 |
story_model = AutoModelForCausalLM.from_pretrained(story_model_name)
|
| 12 |
|
| 13 |
# Function to extract text description from an image
|
| 14 |
-
def extract_description(
|
| 15 |
try:
|
|
|
|
|
|
|
| 16 |
# Use the OCR model to extract a caption/description from the image
|
| 17 |
-
result = ocr_model(
|
| 18 |
return result[0]["generated_text"]
|
| 19 |
except Exception as e:
|
| 20 |
return f"Error extracting description: {e}"
|
|
@@ -39,7 +41,7 @@ def create_story(image):
|
|
| 39 |
# Step 1: Extract a description from the image
|
| 40 |
description = extract_description(image)
|
| 41 |
if not description or "Error" in description:
|
| 42 |
-
return description
|
| 43 |
|
| 44 |
# Step 2: Generate a story from the extracted description
|
| 45 |
story = generate_story(description)
|
|
|
|
| 11 |
story_model = AutoModelForCausalLM.from_pretrained(story_model_name)
|
| 12 |
|
| 13 |
# Function to extract text description from an image
|
| 14 |
+
def extract_description(image_array):
|
| 15 |
try:
|
| 16 |
+
# Convert the NumPy array to a PIL image
|
| 17 |
+
image = Image.fromarray(image_array)
|
| 18 |
# Use the OCR model to extract a caption/description from the image
|
| 19 |
+
result = ocr_model(image)
|
| 20 |
return result[0]["generated_text"]
|
| 21 |
except Exception as e:
|
| 22 |
return f"Error extracting description: {e}"
|
|
|
|
| 41 |
# Step 1: Extract a description from the image
|
| 42 |
description = extract_description(image)
|
| 43 |
if not description or "Error" in description:
|
| 44 |
+
return description
|
| 45 |
|
| 46 |
# Step 2: Generate a story from the extracted description
|
| 47 |
story = generate_story(description)
|