Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
|
|
|
5 |
from reportlab.lib.pagesizes import letter
|
6 |
from reportlab.pdfgen import canvas
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
|
11 |
-
# Load
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
try:
|
19 |
-
|
20 |
-
|
21 |
-
reader = PdfReader(file_path)
|
22 |
-
text = "".join(page.extract_text() for page in reader.pages)
|
23 |
-
return text.strip()
|
24 |
-
# Handle images
|
25 |
-
result = ocr_model(Image.open(file_path))
|
26 |
-
return result[0]['generated_text']
|
27 |
except Exception as e:
|
28 |
-
return f"Error
|
29 |
-
|
30 |
-
# Function to validate prescription using the medical model
|
31 |
-
def validate_prescription_with_model(extracted_text):
|
32 |
-
# Tokenize and process with the AI model
|
33 |
-
inputs = medical_tokenizer(extracted_text, return_tensors="pt", truncation=True, padding=True)
|
34 |
-
outputs = medical_model(**inputs)
|
35 |
-
logits = outputs.logits
|
36 |
-
predictions = logits.softmax(dim=-1)
|
37 |
-
|
38 |
-
# Generate model-driven validation results
|
39 |
-
validation_report = "🔍 Prescription Validation Results:\n"
|
40 |
-
for i, score in enumerate(predictions[0]):
|
41 |
-
token = medical_tokenizer.decode([i]).strip()
|
42 |
-
if token not in ["[PAD]", "[unused1]"]: # Ignore invalid tokens
|
43 |
-
validation_report += f"- {token}: {score.item():.2f}\n"
|
44 |
-
return validation_report
|
45 |
-
|
46 |
-
# Main function to handle prescription analysis
|
47 |
-
def analyze_prescription(file):
|
48 |
-
try:
|
49 |
-
# Step 1: Extract text
|
50 |
-
extracted_text = extract_text(file)
|
51 |
-
if not extracted_text.strip():
|
52 |
-
return "No readable text found in the uploaded file.", None
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
return f"Error processing file: {e}", None
|
67 |
|
68 |
-
#
|
69 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
c = canvas.Canvas(output_path, pagesize=letter)
|
71 |
-
c.drawString(100, 750, "
|
72 |
-
c.drawString(100, 730, "
|
73 |
y_position = 700
|
74 |
for line in content.split("\n"):
|
75 |
c.drawString(100, y_position, line)
|
@@ -77,20 +72,59 @@ def create_pdf_report(content, output_path):
|
|
77 |
c.save()
|
78 |
return output_path
|
79 |
|
80 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
interface = gr.Interface(
|
82 |
-
fn=
|
83 |
-
inputs=gr.
|
84 |
outputs=[
|
85 |
-
gr.Textbox(label="
|
86 |
-
gr.File(label="Download PDF Report")
|
87 |
],
|
88 |
-
title="AI
|
89 |
description=(
|
90 |
-
"Upload
|
91 |
-
"
|
92 |
-
"Download a comprehensive PDF report of the validation results."
|
93 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
allow_flagging="never"
|
95 |
)
|
96 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
import json
|
6 |
from reportlab.lib.pagesizes import letter
|
7 |
from reportlab.pdfgen import canvas
|
8 |
|
9 |
+
# Load BioGPT model for recommendations
|
10 |
+
bio_gpt = pipeline("text-generation", model="microsoft/BioGPT")
|
11 |
|
12 |
+
# Load reference ranges from dataset.json
|
13 |
+
def load_reference_ranges(file_path="dataset.json"):
|
14 |
+
with open(file_path, "r") as file:
|
15 |
+
reference_ranges = json.load(file)
|
16 |
+
return reference_ranges
|
17 |
|
18 |
+
reference_ranges = load_reference_ranges()
|
19 |
+
|
20 |
+
# Extract text from uploaded image using OCR
|
21 |
+
def extract_text_from_image(image):
|
22 |
try:
|
23 |
+
text = pytesseract.image_to_string(Image.open(image))
|
24 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
+
return f"Error extracting text: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Analyze extracted text and compare against reference ranges
|
29 |
+
def analyze_blood_report(text):
|
30 |
+
abnormalities = []
|
31 |
+
analysis = "Blood Test Analysis Results:\n\n"
|
32 |
|
33 |
+
for param, ranges in reference_ranges.items():
|
34 |
+
if param in text.lower():
|
35 |
+
try:
|
36 |
+
# Mock parsing logic to extract the value
|
37 |
+
value = float(text.split(param)[1].split()[0]) # Extract value after the parameter name
|
38 |
+
if value < ranges["low"]:
|
39 |
+
abnormalities.append(f"{param.capitalize()} is LOW ({value} {ranges['unit']}).")
|
40 |
+
elif value > ranges["high"]:
|
41 |
+
abnormalities.append(f"{param.capitalize()} is HIGH ({value} {ranges['unit']}).")
|
42 |
+
else:
|
43 |
+
analysis += f"{param.capitalize()} is NORMAL ({value} {ranges['unit']}).\n"
|
44 |
+
except Exception:
|
45 |
+
analysis += f"{param.capitalize()} could not be analyzed.\n"
|
46 |
|
47 |
+
# Flag abnormalities
|
48 |
+
if abnormalities:
|
49 |
+
analysis += "\nAbnormalities Detected:\n" + "\n".join(abnormalities) + "\n"
|
50 |
+
else:
|
51 |
+
analysis += "\nNo abnormalities detected.\n"
|
52 |
|
53 |
+
return analysis, abnormalities
|
|
|
|
|
54 |
|
55 |
+
# Generate recommendations using BioGPT
|
56 |
+
def get_recommendations(abnormalities):
|
57 |
+
if not abnormalities:
|
58 |
+
return "No recommendations needed."
|
59 |
+
query = " ".join(abnormalities) + " Provide medical recommendations."
|
60 |
+
recommendations = bio_gpt(query, max_length=100, num_return_sequences=1)[0]["generated_text"]
|
61 |
+
return recommendations
|
62 |
+
|
63 |
+
# Create a PDF report
|
64 |
+
def create_pdf_report(content, output_path="blood_test_report.pdf"):
|
65 |
c = canvas.Canvas(output_path, pagesize=letter)
|
66 |
+
c.drawString(100, 750, "Blood Test Report")
|
67 |
+
c.drawString(100, 730, "-----------------")
|
68 |
y_position = 700
|
69 |
for line in content.split("\n"):
|
70 |
c.drawString(100, y_position, line)
|
|
|
72 |
c.save()
|
73 |
return output_path
|
74 |
|
75 |
+
# Main function to process blood test image
|
76 |
+
def process_blood_test(image):
|
77 |
+
# Step 1: Extract text
|
78 |
+
extracted_text = extract_text_from_image(image)
|
79 |
+
if "Error" in extracted_text:
|
80 |
+
return extracted_text, None
|
81 |
+
|
82 |
+
# Step 2: Analyze extracted text
|
83 |
+
analysis, abnormalities = analyze_blood_report(extracted_text)
|
84 |
+
|
85 |
+
# Step 3: Generate recommendations
|
86 |
+
recommendations = get_recommendations(abnormalities)
|
87 |
+
|
88 |
+
# Step 4: Combine results and create PDF
|
89 |
+
full_report = analysis + "\nRecommendations:\n" + recommendations
|
90 |
+
pdf_path = create_pdf_report(full_report)
|
91 |
+
|
92 |
+
return full_report, pdf_path
|
93 |
+
|
94 |
+
# Gradio Interface
|
95 |
interface = gr.Interface(
|
96 |
+
fn=process_blood_test,
|
97 |
+
inputs=gr.Image(type="file", label="Upload Blood Test Report Image (PNG, JPG, JPEG)"),
|
98 |
outputs=[
|
99 |
+
gr.Textbox(label="Analysis and Recommendations"),
|
100 |
+
gr.File(label="Download PDF Report"),
|
101 |
],
|
102 |
+
title="AI Blood Test Analyzer",
|
103 |
description=(
|
104 |
+
"Upload a blood test report image (PNG, JPG, JPEG), and the app will analyze the values, flag abnormalities, "
|
105 |
+
"and provide recommendations using BioGPT. You can also download a PDF report."
|
|
|
106 |
),
|
107 |
+
theme="compact",
|
108 |
+
css="""
|
109 |
+
body {
|
110 |
+
font-family: 'Arial', sans-serif;
|
111 |
+
background-color: #f9f9f9;
|
112 |
+
}
|
113 |
+
.gradio-container {
|
114 |
+
color: #333;
|
115 |
+
max-width: 800px;
|
116 |
+
margin: 0 auto;
|
117 |
+
}
|
118 |
+
.gradio-container .label {
|
119 |
+
font-weight: bold;
|
120 |
+
font-size: 18px;
|
121 |
+
}
|
122 |
+
.gradio-container .output {
|
123 |
+
background-color: #eef;
|
124 |
+
padding: 10px;
|
125 |
+
border-radius: 10px;
|
126 |
+
}
|
127 |
+
""",
|
128 |
allow_flagging="never"
|
129 |
)
|
130 |
|