File size: 3,802 Bytes
add57fc
1120d0b
add57fc
 
 
 
 
1120d0b
34f285a
add57fc
1120d0b
 
 
 
3594567
9170bfd
add57fc
34f285a
 
 
 
 
 
 
 
 
 
 
add57fc
1120d0b
 
 
 
 
 
 
add57fc
1120d0b
 
 
 
 
 
 
 
 
 
34f285a
1120d0b
34f285a
 
 
add57fc
1120d0b
 
9170bfd
1120d0b
 
add57fc
1120d0b
 
 
34f285a
1120d0b
34f285a
 
add57fc
1120d0b
 
 
 
 
 
 
 
 
 
 
 
 
add57fc
1120d0b
 
add57fc
1120d0b
add57fc
 
1120d0b
add57fc
1120d0b
 
 
add57fc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from PIL import Image
from PyPDF2 import PdfReader
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

# Load OCR model for extracting text from images
ocr_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")

# Load medical AI model (BioGPT or similar) for prescription validation
medical_model_name = "microsoft/BioGPT"
medical_tokenizer = AutoTokenizer.from_pretrained(medical_model_name)
medical_model = AutoModelForSequenceClassification.from_pretrained(medical_model_name)

# Function to extract text from images or PDFs
def extract_text(file_path):
    try:
        # Handle PDFs
        if file_path.endswith(".pdf"):
            reader = PdfReader(file_path)
            text = "".join(page.extract_text() for page in reader.pages)
            return text.strip()
        # Handle images
        result = ocr_model(Image.open(file_path))
        return result[0]['generated_text']
    except Exception as e:
        return f"Error processing the file: {e}"

# Function to validate prescription using the medical model
def validate_prescription_with_model(extracted_text):
    # Tokenize and process with the AI model
    inputs = medical_tokenizer(extracted_text, return_tensors="pt", truncation=True, padding=True)
    outputs = medical_model(**inputs)
    logits = outputs.logits
    predictions = logits.softmax(dim=-1)

    # Generate model-driven validation results
    validation_report = "πŸ” Prescription Validation Results:\n"
    for i, score in enumerate(predictions[0]):
        token = medical_tokenizer.decode([i]).strip()
        if token not in ["[PAD]", "[unused1]"]:  # Ignore invalid tokens
            validation_report += f"- {token}: {score.item():.2f}\n"
    return validation_report

# Main function to handle prescription analysis
def analyze_prescription(file):
    try:
        # Step 1: Extract text
        extracted_text = extract_text(file)
        if not extracted_text.strip():
            return "No readable text found in the uploaded file.", None

        # Step 2: Validate prescription using AI model
        validation_report = validate_prescription_with_model(extracted_text)

        # Combine the extracted text and validation results
        full_report = f"Extracted Text:\n{extracted_text}\n\n{validation_report}"

        # Step 3: Generate a PDF report
        output_pdf = "prescription_validation_report.pdf"
        create_pdf_report(full_report, output_pdf)

        return full_report, output_pdf
    except Exception as e:
        return f"Error processing file: {e}", None

# Function to create a PDF report
def create_pdf_report(content, output_path):
    c = canvas.Canvas(output_path, pagesize=letter)
    c.drawString(100, 750, "Prescription Validation Report")
    c.drawString(100, 730, "------------------------------")
    y_position = 700
    for line in content.split("\n"):
        c.drawString(100, y_position, line)
        y_position -= 20
    c.save()
    return output_path

# Gradio interface
interface = gr.Interface(
    fn=analyze_prescription,
    inputs=gr.File(label="Upload your Prescription (PNG, JPG, JPEG, or PDF)"),
    outputs=[
        gr.Textbox(label="Validation Results"),
        gr.File(label="Download PDF Report")
    ],
    title="AI-Powered Prescription Validator",
    description=(
        "Upload your medical prescription in image (PNG, JPG, JPEG) or PDF format. "
        "The app will extract the text, analyze it using advanced AI models, and validate the prescription. "
        "Download a comprehensive PDF report of the validation results."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch()