Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoTokenizer,
|
3 |
+
AutoModelForSeq2SeqLM,
|
4 |
+
pipeline
|
5 |
+
)
|
6 |
+
from textblob import TextBlob as tb
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
|
11 |
+
pipe = pipeline(model="aware-ai/whisper-base-german")
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def translate(text):
|
16 |
+
blob = tb(text)
|
17 |
+
translation = str(blob.translate(from_lang='de',to='en'))
|
18 |
+
return translation
|
19 |
+
|
20 |
+
def translate_to_de(text):
|
21 |
+
blob = tb(text)
|
22 |
+
translation = str(blob.translate(from_lang='en',to='de'))
|
23 |
+
return translation
|
24 |
+
|
25 |
+
def transcribe(audio):
|
26 |
+
text = pipe(audio)["text"]
|
27 |
+
return text
|
28 |
+
|
29 |
+
def generate(input, knowledge):
|
30 |
+
|
31 |
+
if knowledge == '':
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
knowledge = translate(knowledge)
|
35 |
+
|
36 |
+
input = translate(input)
|
37 |
+
|
38 |
+
top_p = 1
|
39 |
+
min_length = 8
|
40 |
+
max_length = 64
|
41 |
+
|
42 |
+
instruction = 'given a dialog context and related knowledge, you need to answer the question based on the knowledge.'
|
43 |
+
|
44 |
+
if knowledge != '':
|
45 |
+
knowledge = '[KNOWLEDGE] ' + knowledge
|
46 |
+
|
47 |
+
dialog = ' EOS '.join([input])
|
48 |
+
query = f"{instruction} [CONTEXT] {dialog} {knowledge}"
|
49 |
+
|
50 |
+
input_ids = tokenizer(f"{query}", return_tensors="pt").input_ids
|
51 |
+
outputs = model.generate(input_ids, min_length=int(
|
52 |
+
min_length), max_length=int(max_length), top_p=top_p, do_sample=True)
|
53 |
+
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
|
55 |
+
output = translate_to_de(output)
|
56 |
+
return output
|
57 |
+
|
58 |
+
with gr.Blocks() as app:
|
59 |
+
|
60 |
+
conocimiento = gr.Textbox(label='Conocimiento',lines=7,max_lines=7)
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
voice = gr.Audio(source='microphone',type='filepath')
|
64 |
+
send_button = gr.Button(value='Transcribir')
|
65 |
+
button2 = gr.Button(value='Respuesta de la IA')
|
66 |
+
|
67 |
+
transc = gr.Textbox(label='Transcripción',value='',)
|
68 |
+
respuesta = gr.Textbox(label='Respuesta',interactive=False,value='')
|
69 |
+
|
70 |
+
send_button.click(fn=transcribe,inputs=voice,outputs=transc)
|
71 |
+
button2.click(fn=generate,inputs=[transc,conocimiento],outputs=respuesta)
|
72 |
+
|
73 |
+
app.launch()
|