'use strict' const dotenv = require('dotenv'); const fs = require('fs').promises; const HfInference = require('@huggingface/inference').HfInference; dotenv.config(); const inference = new HfInference(process.env.HF_TOKEN); const REPO_NAME = "black-forest-labs/FLUX.1-schnell" const IMAGE_SIZES = { "square": { height: 512, width: 512 }, "portrait-3_4": { height: 512, width: 384 }, "portrait-9_16": { height: 512, width: 288 }, "landscape-4_3": { height: 384, width: 512 }, "landscape-16_9": { height: 288, width: 512 } } module.exports = async function (fastify, opts) { fastify.get('/:inputs', async function (request, reply) { let { inputs } = request.params; const { format } = request.query; if (format) { inputs = inputs + " " + format; } const slug = inputs.replace(/[^a-zA-Z0-9-_ ]/g, "").replace(/ /g, "-"); const file = await fs.readFile(process.env.PUBLIC_FILE_UPLOAD_DIR + "/" + slug + ".png")?.catch(() => null) if (file) { return reply .header('Content-Type', 'image/jpeg') .send(file); } const { height, width } = IMAGE_SIZES[format ?? "square"] ?? IMAGE_SIZES["square"]; const hfRequest = await inference.textToImage({ inputs, model: REPO_NAME, parameters: { height, width } }) const buffer = await hfRequest.arrayBuffer(); const array = new Uint8Array(buffer); const dir = await fs.opendir(process.env.PUBLIC_FILE_UPLOAD_DIR).catch(() => null) if (!dir) await fs.mkdir(process.env.PUBLIC_FILE_UPLOAD_DIR) await fs.writeFile(process.env.PUBLIC_FILE_UPLOAD_DIR + "/" + slug + ".png", array) return reply .header('Content-Type', 'image/jpeg') .send(array); }) }