import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt from transformers import pipeline import plotly.express as px # Initialize the Hugging Face model for expense categorization (use zero-shot classification) expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Batch categorization function for efficiency def categorize_transaction_batch(descriptions): candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"] return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions] # Function to process the uploaded CSV and generate visualizations def process_expenses(file): # Read CSV data df = pd.read_csv(file.name) # Check if required columns are present if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns: return "CSV file should contain 'Date', 'Description', and 'Amount' columns." # Categorize the expenses (using batch processing to minimize model calls) df['Category'] = categorize_transaction_batch(df['Description'].tolist()) # Create visualizations: # 1. Pie chart for Category-wise spendin