|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from transformers import pipeline |
|
from io import StringIO |
|
|
|
|
|
st.set_page_config(page_title="Smart Expense Tracker", page_icon=":money_with_wings:") |
|
|
|
|
|
st.title("Smart Expense Tracker :money_with_wings:") |
|
|
|
|
|
st.sidebar.header("Upload your expense data") |
|
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=["csv"]) |
|
|
|
|
|
if uploaded_file is not None: |
|
|
|
df = pd.read_csv(uploaded_file) |
|
|
|
|
|
st.write("### Uploaded Data", df.head()) |
|
|
|
|
|
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns: |
|
st.error("CSV file should contain 'Date', 'Description', and 'Amount' columns.") |
|
else: |
|
|
|
expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") |
|
|
|
|
|
def categorize_transaction(description): |
|
candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"] |
|
result = expense_classifier(description, candidate_labels) |
|
return result["labels"][0] |
|
|
|
|
|
df['Category'] = df['Description'].apply(categorize_transaction) |
|
|
|
|
|
st.write("### Categorized Expense Data", df.head()) |
|
|
|
|
|
|
|
|
|
category_spending = df.groupby("Category")['Amount'].sum() |
|
st.write("### Category-wise Spending") |
|
fig, ax = plt.subplots() |
|
category_spending.plot(kind='pie', autopct='%1.1f%%', ax=ax, figsize=(8, 8)) |
|
ax.set_ylabel('') |
|
st.pyplot(fig) |
|
|
|
|
|
df['Date'] = pd.to_datetime(df['Date']) |
|
df['Month'] = df['Date'].dt.to_period('M') |
|
monthly_spending = df.groupby('Month')['Amount'].sum() |
|
|
|
st.write("### Monthly Spending Trends") |
|
fig, ax = plt.subplots() |
|
monthly_spending.plot(kind='line', ax=ax, figsize=(10, 6)) |
|
ax.set_ylabel('Amount ($)') |
|
ax.set_xlabel('Month') |
|
ax.set_title('Monthly Spending Trends') |
|
st.pyplot(fig) |
|
|
|
|
|
st.sidebar.header("Budget Tracker") |
|
category_list = df['Category'].unique() |
|
budget_dict = {} |
|
|
|
for category in category_list: |
|
budget_dict[category] = st.sidebar.number_input(f"Set budget for {category}", min_value=0, value=500) |
|
|
|
|
|
st.write("### Budget vs Actual Spending") |
|
budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list} |
|
|
|
budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T |
|
fig, ax = plt.subplots() |
|
budget_df.plot(kind='bar', ax=ax, figsize=(10, 6)) |
|
ax.set_ylabel('Amount ($)') |
|
ax.set_title('Budget vs Actual Spending') |
|
st.pyplot(fig) |
|
|
|
|
|
st.write("### Suggested Savings Tips") |
|
for category, actual in category_spending.items(): |
|
if actual > budget_dict.get(category, 500): |
|
st.write(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.") |
|
|
|
else: |
|
st.write("Upload a CSV file to start tracking your expenses!") |
|
|