engralimalik's picture
Update app.py
2c359f1 verified
raw
history blame
3.22 kB
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from transformers import pipeline
import plotly.express as px
# Initialize the Hugging Face model for expense categorization
expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Function to categorize expenses
def categorize_transaction_batch(descriptions):
candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"]
return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions]
# Function to process the uploaded CSV and generate visualizations
def process_expenses(file):
df = pd.read_csv(file.name)
# Check required columns
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
return "CSV file should contain 'Date', 'Description', and 'Amount' columns."
# Categorize the expenses
df['Category'] = categorize_transaction_batch(df['Description'].tolist())
# Pie chart for Category-wise spending
category_spending = df.groupby("Category")['Amount'].sum()
fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending")
# Monthly spending trends (Line plot)
df['Date'] = pd.to_datetime(df['Date'])
df['Month'] = df['Date'].dt.to_period('M')
monthly_spending = df.groupby('Month')['Amount'].sum()
fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends")
# Budget vs Actual Spending (Bar chart)
category_list = df['Category'].unique()
budget_dict = {category: 500 for category in category_list} # Set default budget of 500 for each category
budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list}
budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T
fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title="Budget vs Actual Spending")
# Suggested savings
savings_tips = []
for category, actual in category_spending.items():
if actual > budget_dict.get(category, 500):
savings_tips.append(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.")
return df.head(), fig1, fig2, fig3, savings_tips
# Gradio interface definition
inputs = gr.inputs.File(label="Upload Expense CSV", type="file")
outputs = [
gr.outputs.Dataframe(label="Categorized Expense Data"),
gr.outputs.Plotly(label="Category-wise Spending (Pie Chart)"),
gr.outputs.Plotly(label="Monthly Spending Trends (Line Chart)"),
gr.outputs.Plotly(label="Budget vs Actual Spending (Bar Chart)"),
gr.outputs.Textbox(label="Savings Tips")
]
# Launch Gradio interface
gr.Interface(
fn=process_expenses,
inputs=inputs,
outputs=outputs,
live=True,
title="Smart Expense Tracker",
description="Upload your CSV of transactions, categorize them, and view insights like spending trends and budget analysis."
).launch()