import torch import json import os version_config_paths = [ os.path.join("48000.json"), os.path.join("40000.json"), os.path.join("44100.json"), os.path.join("32000.json"), ] def singleton(cls): instances = {} def get_instance(*args, **kwargs): if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return get_instance @singleton class Config: def __init__(self): self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self.gpu_name = ( torch.cuda.get_device_name(int(self.device.split(":")[-1])) if self.device.startswith("cuda") else None ) self.json_config = self.load_config_json() self.gpu_mem = None self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def load_config_json(self): configs = {} for config_file in version_config_paths: config_path = os.path.join("rvc", "configs", config_file) with open(config_path, "r") as f: configs[config_file] = json.load(f) return configs def device_config(self): if self.device.startswith("cuda"): self.set_cuda_config() else: self.device = "cpu" # Configuration for 6GB GPU memory x_pad, x_query, x_center, x_max = (1, 6, 38, 41) if self.gpu_mem is not None and self.gpu_mem <= 4: # Configuration for 5GB GPU memory x_pad, x_query, x_center, x_max = (1, 5, 30, 32) return x_pad, x_query, x_center, x_max def set_cuda_config(self): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( 1024**3 ) def max_vram_gpu(gpu): if torch.cuda.is_available(): gpu_properties = torch.cuda.get_device_properties(gpu) total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) return total_memory_gb else: return "8" def get_gpu_info(): ngpu = torch.cuda.device_count() gpu_infos = [] if torch.cuda.is_available() or ngpu != 0: for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) mem = int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)") if len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) else: gpu_info = "Unfortunately, there is no compatible GPU available to support your training." return gpu_info def get_number_of_gpus(): if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() return "-".join(map(str, range(num_gpus))) else: return "-"