Spaces:
Runtime error
Runtime error
Update tabs/train/train.py
Browse files- tabs/train/train.py +1008 -1008
tabs/train/train.py
CHANGED
|
@@ -1,1008 +1,1008 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
import sys
|
| 4 |
-
from multiprocessing import cpu_count
|
| 5 |
-
|
| 6 |
-
import gradio as gr
|
| 7 |
-
|
| 8 |
-
from assets.i18n.i18n import I18nAuto
|
| 9 |
-
from core import (
|
| 10 |
-
run_extract_script,
|
| 11 |
-
run_index_script,
|
| 12 |
-
run_preprocess_script,
|
| 13 |
-
run_prerequisites_script,
|
| 14 |
-
run_train_script,
|
| 15 |
-
)
|
| 16 |
-
from rvc.configs.config import get_gpu_info, get_number_of_gpus, max_vram_gpu
|
| 17 |
-
from rvc.lib.utils import format_title
|
| 18 |
-
from tabs.settings.sections.restart import stop_train
|
| 19 |
-
|
| 20 |
-
i18n = I18nAuto()
|
| 21 |
-
now_dir = os.getcwd()
|
| 22 |
-
sys.path.append(now_dir)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
sup_audioext = {
|
| 26 |
-
"wav",
|
| 27 |
-
"mp3",
|
| 28 |
-
"flac",
|
| 29 |
-
"ogg",
|
| 30 |
-
"opus",
|
| 31 |
-
"m4a",
|
| 32 |
-
"mp4",
|
| 33 |
-
"aac",
|
| 34 |
-
"alac",
|
| 35 |
-
"wma",
|
| 36 |
-
"aiff",
|
| 37 |
-
"webm",
|
| 38 |
-
"ac3",
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
# Custom Pretraineds
|
| 42 |
-
pretraineds_custom_path = os.path.join(
|
| 43 |
-
now_dir, "rvc", "models", "pretraineds", "pretraineds_custom"
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)
|
| 47 |
-
|
| 48 |
-
custom_embedder_root = os.path.join(
|
| 49 |
-
now_dir, "rvc", "models", "embedders", "embedders_custom"
|
| 50 |
-
)
|
| 51 |
-
custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)
|
| 52 |
-
|
| 53 |
-
os.makedirs(custom_embedder_root, exist_ok=True)
|
| 54 |
-
os.makedirs(pretraineds_custom_path_relative, exist_ok=True)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def get_pretrained_list(suffix):
|
| 58 |
-
return [
|
| 59 |
-
os.path.join(dirpath, filename)
|
| 60 |
-
for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
|
| 61 |
-
for filename in filenames
|
| 62 |
-
if filename.endswith(".pth") and suffix in filename
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
pretraineds_list_d = get_pretrained_list("D")
|
| 67 |
-
pretraineds_list_g = get_pretrained_list("G")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def refresh_custom_pretraineds():
|
| 71 |
-
return (
|
| 72 |
-
{"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
|
| 73 |
-
{"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# Dataset Creator
|
| 78 |
-
datasets_path = os.path.join(now_dir, "assets", "datasets")
|
| 79 |
-
|
| 80 |
-
if not os.path.exists(datasets_path):
|
| 81 |
-
os.makedirs(datasets_path)
|
| 82 |
-
|
| 83 |
-
datasets_path_relative = os.path.relpath(datasets_path, now_dir)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def get_datasets_list():
|
| 87 |
-
return [
|
| 88 |
-
dirpath
|
| 89 |
-
for dirpath, _, filenames in os.walk(datasets_path_relative)
|
| 90 |
-
if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
|
| 91 |
-
]
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def refresh_datasets():
|
| 95 |
-
return {"choices": sorted(get_datasets_list()), "__type__": "update"}
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Model Names
|
| 99 |
-
models_path = os.path.join(now_dir, "logs")
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def get_models_list():
|
| 103 |
-
return [
|
| 104 |
-
os.path.basename(dirpath)
|
| 105 |
-
for dirpath in os.listdir(models_path)
|
| 106 |
-
if os.path.isdir(os.path.join(models_path, dirpath))
|
| 107 |
-
and all(excluded not in dirpath for excluded in ["zips", "mute", "reference"])
|
| 108 |
-
]
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
def refresh_models():
|
| 112 |
-
return {"choices": sorted(get_models_list()), "__type__": "update"}
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# Refresh Models and Datasets
|
| 116 |
-
def refresh_models_and_datasets():
|
| 117 |
-
return (
|
| 118 |
-
{"choices": sorted(get_models_list()), "__type__": "update"},
|
| 119 |
-
{"choices": sorted(get_datasets_list()), "__type__": "update"},
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
# Refresh Custom Embedders
|
| 124 |
-
def get_embedder_custom_list():
|
| 125 |
-
return [
|
| 126 |
-
os.path.join(dirpath, dirname)
|
| 127 |
-
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
| 128 |
-
for dirname in dirnames
|
| 129 |
-
]
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def refresh_custom_embedder_list():
|
| 133 |
-
return {"choices": sorted(get_embedder_custom_list()), "__type__": "update"}
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
# Drop Model
|
| 137 |
-
def save_drop_model(dropbox):
|
| 138 |
-
if ".pth" not in dropbox:
|
| 139 |
-
gr.Info(
|
| 140 |
-
i18n(
|
| 141 |
-
"The file you dropped is not a valid pretrained file. Please try again."
|
| 142 |
-
)
|
| 143 |
-
)
|
| 144 |
-
else:
|
| 145 |
-
file_name = os.path.basename(dropbox)
|
| 146 |
-
pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
|
| 147 |
-
if os.path.exists(pretrained_path):
|
| 148 |
-
os.remove(pretrained_path)
|
| 149 |
-
shutil.copy(dropbox, pretrained_path)
|
| 150 |
-
gr.Info(
|
| 151 |
-
i18n(
|
| 152 |
-
"Click the refresh button to see the pretrained file in the dropdown menu."
|
| 153 |
-
)
|
| 154 |
-
)
|
| 155 |
-
return None
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
# Drop Dataset
|
| 159 |
-
def save_drop_dataset_audio(dropbox, dataset_name):
|
| 160 |
-
if not dataset_name:
|
| 161 |
-
gr.Info("Please enter a valid dataset name. Please try again.")
|
| 162 |
-
return None, None
|
| 163 |
-
else:
|
| 164 |
-
file_extension = os.path.splitext(dropbox)[1][1:].lower()
|
| 165 |
-
if file_extension not in sup_audioext:
|
| 166 |
-
gr.Info("The file you dropped is not a valid audio file. Please try again.")
|
| 167 |
-
else:
|
| 168 |
-
dataset_name = format_title(dataset_name)
|
| 169 |
-
audio_file = format_title(os.path.basename(dropbox))
|
| 170 |
-
dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
|
| 171 |
-
if not os.path.exists(dataset_path):
|
| 172 |
-
os.makedirs(dataset_path)
|
| 173 |
-
destination_path = os.path.join(dataset_path, audio_file)
|
| 174 |
-
if os.path.exists(destination_path):
|
| 175 |
-
os.remove(destination_path)
|
| 176 |
-
shutil.copy(dropbox, destination_path)
|
| 177 |
-
gr.Info(
|
| 178 |
-
i18n(
|
| 179 |
-
"The audio file has been successfully added to the dataset. Please click the preprocess button."
|
| 180 |
-
)
|
| 181 |
-
)
|
| 182 |
-
dataset_path = os.path.dirname(destination_path)
|
| 183 |
-
relative_dataset_path = os.path.relpath(dataset_path, now_dir)
|
| 184 |
-
|
| 185 |
-
return None, relative_dataset_path
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# Drop Custom Embedder
|
| 189 |
-
def create_folder_and_move_files(folder_name, bin_file, config_file):
|
| 190 |
-
if not folder_name:
|
| 191 |
-
return "Folder name must not be empty."
|
| 192 |
-
|
| 193 |
-
folder_name = os.path.join(custom_embedder_root, folder_name)
|
| 194 |
-
os.makedirs(folder_name, exist_ok=True)
|
| 195 |
-
|
| 196 |
-
if bin_file:
|
| 197 |
-
bin_file_path = os.path.join(folder_name, os.path.basename(bin_file))
|
| 198 |
-
shutil.copy(bin_file, bin_file_path)
|
| 199 |
-
|
| 200 |
-
if config_file:
|
| 201 |
-
config_file_path = os.path.join(folder_name, os.path.basename(config_file))
|
| 202 |
-
shutil.copy(config_file, config_file_path)
|
| 203 |
-
|
| 204 |
-
return f"Files moved to folder {folder_name}"
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
def refresh_embedders_folders():
|
| 208 |
-
custom_embedders = [
|
| 209 |
-
os.path.join(dirpath, dirname)
|
| 210 |
-
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
| 211 |
-
for dirname in dirnames
|
| 212 |
-
]
|
| 213 |
-
return custom_embedders
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
# Export
|
| 217 |
-
## Get Pth and Index Files
|
| 218 |
-
def get_pth_list():
|
| 219 |
-
return [
|
| 220 |
-
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
| 221 |
-
for dirpath, _, filenames in os.walk(models_path)
|
| 222 |
-
for filename in filenames
|
| 223 |
-
if filename.endswith(".pth")
|
| 224 |
-
]
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
def get_index_list():
|
| 228 |
-
return [
|
| 229 |
-
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
| 230 |
-
for dirpath, _, filenames in os.walk(models_path)
|
| 231 |
-
for filename in filenames
|
| 232 |
-
if filename.endswith(".index") and "trained" not in filename
|
| 233 |
-
]
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def refresh_pth_and_index_list():
|
| 237 |
-
return (
|
| 238 |
-
{"choices": sorted(get_pth_list()), "__type__": "update"},
|
| 239 |
-
{"choices": sorted(get_index_list()), "__type__": "update"},
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
## Export Pth and Index Files
|
| 244 |
-
def export_pth(pth_path):
|
| 245 |
-
if pth_path and os.path.exists(pth_path):
|
| 246 |
-
return pth_path
|
| 247 |
-
return None
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
def export_index(index_path):
|
| 251 |
-
if index_path and os.path.exists(index_path):
|
| 252 |
-
return index_path
|
| 253 |
-
return None
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
## Upload to Google Drive
|
| 257 |
-
def upload_to_google_drive(pth_path, index_path):
|
| 258 |
-
def upload_file(file_path):
|
| 259 |
-
if file_path:
|
| 260 |
-
try:
|
| 261 |
-
gr.Info(f"Uploading {pth_path} to Google Drive...")
|
| 262 |
-
google_drive_folder = "/content/drive/MyDrive/ApplioExported"
|
| 263 |
-
if not os.path.exists(google_drive_folder):
|
| 264 |
-
os.makedirs(google_drive_folder)
|
| 265 |
-
google_drive_file_path = os.path.join(
|
| 266 |
-
google_drive_folder, os.path.basename(file_path)
|
| 267 |
-
)
|
| 268 |
-
if os.path.exists(google_drive_file_path):
|
| 269 |
-
os.remove(google_drive_file_path)
|
| 270 |
-
shutil.copy2(file_path, google_drive_file_path)
|
| 271 |
-
gr.Info("File uploaded successfully.")
|
| 272 |
-
except Exception as error:
|
| 273 |
-
print(f"An error occurred uploading to Google Drive: {error}")
|
| 274 |
-
gr.Info("Error uploading to Google Drive")
|
| 275 |
-
|
| 276 |
-
upload_file(pth_path)
|
| 277 |
-
upload_file(index_path)
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
# Train Tab
|
| 281 |
-
def train_tab():
|
| 282 |
-
# Model settings section
|
| 283 |
-
with gr.Accordion(i18n("Model Settings")):
|
| 284 |
-
with gr.Row():
|
| 285 |
-
with gr.Column():
|
| 286 |
-
model_name = gr.Dropdown(
|
| 287 |
-
label=i18n("Model Name"),
|
| 288 |
-
info=i18n("Name of the new model."),
|
| 289 |
-
choices=get_models_list(),
|
| 290 |
-
value="my-project",
|
| 291 |
-
interactive=True,
|
| 292 |
-
allow_custom_value=True,
|
| 293 |
-
)
|
| 294 |
-
architecture = gr.Radio(
|
| 295 |
-
label=i18n("Architecture"),
|
| 296 |
-
info=i18n(
|
| 297 |
-
"Choose the model architecture:\n- **RVC (V2)**: Default option, compatible with all clients.\n- **Applio**: Advanced quality with improved vocoders and higher sample rates, Applio-only."
|
| 298 |
-
),
|
| 299 |
-
choices=["RVC", "Applio"],
|
| 300 |
-
value="RVC",
|
| 301 |
-
interactive=True,
|
| 302 |
-
visible=True,
|
| 303 |
-
)
|
| 304 |
-
with gr.Column():
|
| 305 |
-
sampling_rate = gr.Radio(
|
| 306 |
-
label=i18n("Sampling Rate"),
|
| 307 |
-
info=i18n("The sampling rate of the audio files."),
|
| 308 |
-
choices=["32000", "40000", "48000"],
|
| 309 |
-
value="40000",
|
| 310 |
-
interactive=True,
|
| 311 |
-
)
|
| 312 |
-
vocoder = gr.Radio(
|
| 313 |
-
label=i18n("Vocoder"),
|
| 314 |
-
info=i18n(
|
| 315 |
-
"Choose the vocoder for audio synthesis:\n- **HiFi-GAN**: Default option, compatible with all clients.\n- **MRF HiFi-GAN**: Higher fidelity, Applio-only.\n- **RefineGAN**: Superior audio quality, Applio-only."
|
| 316 |
-
),
|
| 317 |
-
choices=["HiFi-GAN", "MRF HiFi-GAN", "RefineGAN"],
|
| 318 |
-
value="HiFi-GAN",
|
| 319 |
-
interactive=False,
|
| 320 |
-
visible=True,
|
| 321 |
-
)
|
| 322 |
-
with gr.Accordion(
|
| 323 |
-
i18n("Advanced Settings"),
|
| 324 |
-
open=False,
|
| 325 |
-
):
|
| 326 |
-
with gr.Row():
|
| 327 |
-
with gr.Column():
|
| 328 |
-
cpu_cores = gr.Slider(
|
| 329 |
-
1,
|
| 330 |
-
min(cpu_count(), 32), # max 32 parallel processes
|
| 331 |
-
min(cpu_count(), 32),
|
| 332 |
-
step=1,
|
| 333 |
-
label=i18n("CPU Cores"),
|
| 334 |
-
info=i18n(
|
| 335 |
-
"The number of CPU cores to use in the extraction process. The default setting are your cpu cores, which is recommended for most cases."
|
| 336 |
-
),
|
| 337 |
-
interactive=True,
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
with gr.Column():
|
| 341 |
-
gpu = gr.Textbox(
|
| 342 |
-
label=i18n("GPU Number"),
|
| 343 |
-
info=i18n(
|
| 344 |
-
"Specify the number of GPUs you wish to utilize for extracting by entering them separated by hyphens (-)."
|
| 345 |
-
),
|
| 346 |
-
placeholder=i18n("0 to ∞ separated by -"),
|
| 347 |
-
value=str(get_number_of_gpus()),
|
| 348 |
-
interactive=True,
|
| 349 |
-
)
|
| 350 |
-
gr.Textbox(
|
| 351 |
-
label=i18n("GPU Information"),
|
| 352 |
-
info=i18n("The GPU information will be displayed here."),
|
| 353 |
-
value=get_gpu_info(),
|
| 354 |
-
interactive=False,
|
| 355 |
-
)
|
| 356 |
-
# Preprocess section
|
| 357 |
-
with gr.Accordion(i18n("Preprocess")):
|
| 358 |
-
dataset_path = gr.Dropdown(
|
| 359 |
-
label=i18n("Dataset Path"),
|
| 360 |
-
info=i18n("Path to the dataset folder."),
|
| 361 |
-
# placeholder=i18n("Enter dataset path"),
|
| 362 |
-
choices=get_datasets_list(),
|
| 363 |
-
allow_custom_value=True,
|
| 364 |
-
interactive=True,
|
| 365 |
-
)
|
| 366 |
-
dataset_creator = gr.Checkbox(
|
| 367 |
-
label=i18n("Dataset Creator"),
|
| 368 |
-
value=False,
|
| 369 |
-
interactive=True,
|
| 370 |
-
visible=True,
|
| 371 |
-
)
|
| 372 |
-
with gr.Column(visible=False) as dataset_creator_settings:
|
| 373 |
-
with gr.Accordion(i18n("Dataset Creator")):
|
| 374 |
-
dataset_name = gr.Textbox(
|
| 375 |
-
label=i18n("Dataset Name"),
|
| 376 |
-
info=i18n("Name of the new dataset."),
|
| 377 |
-
placeholder=i18n("Enter dataset name"),
|
| 378 |
-
interactive=True,
|
| 379 |
-
)
|
| 380 |
-
upload_audio_dataset = gr.File(
|
| 381 |
-
label=i18n("Upload Audio Dataset"),
|
| 382 |
-
type="filepath",
|
| 383 |
-
interactive=True,
|
| 384 |
-
)
|
| 385 |
-
refresh = gr.Button(i18n("Refresh"))
|
| 386 |
-
|
| 387 |
-
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
| 388 |
-
cut_preprocess = gr.Radio(
|
| 389 |
-
label=i18n("Audio cutting"),
|
| 390 |
-
info=i18n(
|
| 391 |
-
"Audio file slicing method: Select 'Skip' if the files are already pre-sliced, 'Simple' if excessive silence has already been removed from the files, or 'Automatic' for automatic silence detection and slicing around it."
|
| 392 |
-
),
|
| 393 |
-
choices=["Skip", "Simple", "Automatic"],
|
| 394 |
-
value="Automatic",
|
| 395 |
-
interactive=True,
|
| 396 |
-
)
|
| 397 |
-
with gr.Row():
|
| 398 |
-
chunk_len = gr.Slider(
|
| 399 |
-
0.5,
|
| 400 |
-
5.0,
|
| 401 |
-
3.0,
|
| 402 |
-
step=0.1,
|
| 403 |
-
label=i18n("Chunk length (sec)"),
|
| 404 |
-
info=i18n("Length of the audio slice for 'Simple' method."),
|
| 405 |
-
interactive=True,
|
| 406 |
-
)
|
| 407 |
-
overlap_len = gr.Slider(
|
| 408 |
-
0.0,
|
| 409 |
-
0.4,
|
| 410 |
-
0.3,
|
| 411 |
-
step=0.1,
|
| 412 |
-
label=i18n("Overlap length (sec)"),
|
| 413 |
-
info=i18n(
|
| 414 |
-
"Length of the overlap between slices for 'Simple' method."
|
| 415 |
-
),
|
| 416 |
-
interactive=True,
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
with gr.Row():
|
| 420 |
-
process_effects = gr.Checkbox(
|
| 421 |
-
label=i18n("Process effects"),
|
| 422 |
-
info=i18n(
|
| 423 |
-
"It's recommended to deactivate this option if your dataset has already been processed."
|
| 424 |
-
),
|
| 425 |
-
value=True,
|
| 426 |
-
interactive=True,
|
| 427 |
-
visible=True,
|
| 428 |
-
)
|
| 429 |
-
noise_reduction = gr.Checkbox(
|
| 430 |
-
label=i18n("Noise Reduction"),
|
| 431 |
-
info=i18n(
|
| 432 |
-
"It's recommended keep deactivate this option if your dataset has already been processed."
|
| 433 |
-
),
|
| 434 |
-
value=False,
|
| 435 |
-
interactive=True,
|
| 436 |
-
visible=True,
|
| 437 |
-
)
|
| 438 |
-
clean_strength = gr.Slider(
|
| 439 |
-
minimum=0,
|
| 440 |
-
maximum=1,
|
| 441 |
-
label=i18n("Noise Reduction Strength"),
|
| 442 |
-
info=i18n(
|
| 443 |
-
"Set the clean-up level to the audio you want, the more you increase it the more it will clean up, but it is possible that the audio will be more compressed."
|
| 444 |
-
),
|
| 445 |
-
visible=False,
|
| 446 |
-
value=0.5,
|
| 447 |
-
interactive=True,
|
| 448 |
-
)
|
| 449 |
-
preprocess_output_info = gr.Textbox(
|
| 450 |
-
label=i18n("Output Information"),
|
| 451 |
-
info=i18n("The output information will be displayed here."),
|
| 452 |
-
value="",
|
| 453 |
-
max_lines=8,
|
| 454 |
-
interactive=False,
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
with gr.Row():
|
| 458 |
-
preprocess_button = gr.Button(i18n("Preprocess Dataset"))
|
| 459 |
-
preprocess_button.click(
|
| 460 |
-
fn=run_preprocess_script,
|
| 461 |
-
inputs=[
|
| 462 |
-
model_name,
|
| 463 |
-
dataset_path,
|
| 464 |
-
sampling_rate,
|
| 465 |
-
cpu_cores,
|
| 466 |
-
cut_preprocess,
|
| 467 |
-
process_effects,
|
| 468 |
-
noise_reduction,
|
| 469 |
-
clean_strength,
|
| 470 |
-
chunk_len,
|
| 471 |
-
overlap_len,
|
| 472 |
-
],
|
| 473 |
-
outputs=[preprocess_output_info],
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
# Extract section
|
| 477 |
-
with gr.Accordion(i18n("Extract")):
|
| 478 |
-
with gr.Row():
|
| 479 |
-
f0_method = gr.Radio(
|
| 480 |
-
label=i18n("Pitch extraction algorithm"),
|
| 481 |
-
info=i18n(
|
| 482 |
-
"Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
|
| 483 |
-
),
|
| 484 |
-
choices=["crepe", "crepe-tiny", "rmvpe"],
|
| 485 |
-
value="rmvpe",
|
| 486 |
-
interactive=True,
|
| 487 |
-
)
|
| 488 |
-
|
| 489 |
-
embedder_model = gr.Radio(
|
| 490 |
-
label=i18n("Embedder Model"),
|
| 491 |
-
info=i18n("Model used for learning speaker embedding."),
|
| 492 |
-
choices=[
|
| 493 |
-
"contentvec",
|
| 494 |
-
"chinese-hubert-base",
|
| 495 |
-
"japanese-hubert-base",
|
| 496 |
-
"korean-hubert-base",
|
| 497 |
-
"custom",
|
| 498 |
-
],
|
| 499 |
-
value="contentvec",
|
| 500 |
-
interactive=True,
|
| 501 |
-
)
|
| 502 |
-
include_mutes = gr.Slider(
|
| 503 |
-
0,
|
| 504 |
-
10,
|
| 505 |
-
2,
|
| 506 |
-
step=1,
|
| 507 |
-
label=i18n("Silent training files"),
|
| 508 |
-
info=i18n(
|
| 509 |
-
"Adding several silent files to the training set enables the model to handle pure silence in inferred audio files. Select 0 if your dataset is clean and already contains segments of pure silence."
|
| 510 |
-
),
|
| 511 |
-
value=True,
|
| 512 |
-
interactive=True,
|
| 513 |
-
)
|
| 514 |
-
hop_length = gr.Slider(
|
| 515 |
-
1,
|
| 516 |
-
512,
|
| 517 |
-
128,
|
| 518 |
-
step=1,
|
| 519 |
-
label=i18n("Hop Length"),
|
| 520 |
-
info=i18n(
|
| 521 |
-
"Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
|
| 522 |
-
),
|
| 523 |
-
visible=False,
|
| 524 |
-
interactive=True,
|
| 525 |
-
)
|
| 526 |
-
with gr.Row(visible=False) as embedder_custom:
|
| 527 |
-
with gr.Accordion("Custom Embedder", open=True):
|
| 528 |
-
with gr.Row():
|
| 529 |
-
embedder_model_custom = gr.Dropdown(
|
| 530 |
-
label="Select Custom Embedder",
|
| 531 |
-
choices=refresh_embedders_folders(),
|
| 532 |
-
interactive=True,
|
| 533 |
-
allow_custom_value=True,
|
| 534 |
-
)
|
| 535 |
-
refresh_embedders_button = gr.Button("Refresh embedders")
|
| 536 |
-
folder_name_input = gr.Textbox(label="Folder Name", interactive=True)
|
| 537 |
-
with gr.Row():
|
| 538 |
-
bin_file_upload = gr.File(
|
| 539 |
-
label="Upload .bin", type="filepath", interactive=True
|
| 540 |
-
)
|
| 541 |
-
config_file_upload = gr.File(
|
| 542 |
-
label="Upload .json", type="filepath", interactive=True
|
| 543 |
-
)
|
| 544 |
-
move_files_button = gr.Button("Move files to custom embedder folder")
|
| 545 |
-
|
| 546 |
-
extract_output_info = gr.Textbox(
|
| 547 |
-
label=i18n("Output Information"),
|
| 548 |
-
info=i18n("The output information will be displayed here."),
|
| 549 |
-
value="",
|
| 550 |
-
max_lines=8,
|
| 551 |
-
interactive=False,
|
| 552 |
-
)
|
| 553 |
-
extract_button = gr.Button(i18n("Extract Features"))
|
| 554 |
-
extract_button.click(
|
| 555 |
-
fn=run_extract_script,
|
| 556 |
-
inputs=[
|
| 557 |
-
model_name,
|
| 558 |
-
f0_method,
|
| 559 |
-
hop_length,
|
| 560 |
-
cpu_cores,
|
| 561 |
-
gpu,
|
| 562 |
-
sampling_rate,
|
| 563 |
-
embedder_model,
|
| 564 |
-
embedder_model_custom,
|
| 565 |
-
include_mutes,
|
| 566 |
-
],
|
| 567 |
-
outputs=[extract_output_info],
|
| 568 |
-
)
|
| 569 |
-
|
| 570 |
-
# Training section
|
| 571 |
-
with gr.Accordion(i18n("Training")):
|
| 572 |
-
with gr.Row():
|
| 573 |
-
batch_size = gr.Slider(
|
| 574 |
-
1,
|
| 575 |
-
50,
|
| 576 |
-
max_vram_gpu(0),
|
| 577 |
-
step=1,
|
| 578 |
-
label=i18n("Batch Size"),
|
| 579 |
-
info=i18n(
|
| 580 |
-
"It's advisable to align it with the available VRAM of your GPU. A setting of 4 offers improved accuracy but slower processing, while 8 provides faster and standard results."
|
| 581 |
-
),
|
| 582 |
-
interactive=True,
|
| 583 |
-
)
|
| 584 |
-
save_every_epoch = gr.Slider(
|
| 585 |
-
1,
|
| 586 |
-
100,
|
| 587 |
-
10,
|
| 588 |
-
step=1,
|
| 589 |
-
label=i18n("Save Every Epoch"),
|
| 590 |
-
info=i18n("Determine at how many epochs the model will saved at."),
|
| 591 |
-
interactive=True,
|
| 592 |
-
)
|
| 593 |
-
total_epoch = gr.Slider(
|
| 594 |
-
1,
|
| 595 |
-
10000,
|
| 596 |
-
500,
|
| 597 |
-
step=1,
|
| 598 |
-
label=i18n("Total Epoch"),
|
| 599 |
-
info=i18n(
|
| 600 |
-
"Specifies the overall quantity of epochs for the model training process."
|
| 601 |
-
),
|
| 602 |
-
interactive=True,
|
| 603 |
-
)
|
| 604 |
-
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
| 605 |
-
with gr.Row():
|
| 606 |
-
with gr.Column():
|
| 607 |
-
save_only_latest = gr.Checkbox(
|
| 608 |
-
label=i18n("Save Only Latest"),
|
| 609 |
-
info=i18n(
|
| 610 |
-
"Enabling this setting will result in the G and D files saving only their most recent versions, effectively conserving storage space."
|
| 611 |
-
),
|
| 612 |
-
value=True,
|
| 613 |
-
interactive=True,
|
| 614 |
-
)
|
| 615 |
-
save_every_weights = gr.Checkbox(
|
| 616 |
-
label=i18n("Save Every Weights"),
|
| 617 |
-
info=i18n(
|
| 618 |
-
"This setting enables you to save the weights of the model at the conclusion of each epoch."
|
| 619 |
-
),
|
| 620 |
-
value=True,
|
| 621 |
-
interactive=True,
|
| 622 |
-
)
|
| 623 |
-
pretrained = gr.Checkbox(
|
| 624 |
-
label=i18n("Pretrained"),
|
| 625 |
-
info=i18n(
|
| 626 |
-
"Utilize pretrained models when training your own. This approach reduces training duration and enhances overall quality."
|
| 627 |
-
),
|
| 628 |
-
value=True,
|
| 629 |
-
interactive=True,
|
| 630 |
-
)
|
| 631 |
-
with gr.Column():
|
| 632 |
-
cleanup = gr.Checkbox(
|
| 633 |
-
label=i18n("Fresh Training"),
|
| 634 |
-
info=i18n(
|
| 635 |
-
"Enable this setting only if you are training a new model from scratch or restarting the training. Deletes all previously generated weights and tensorboard logs."
|
| 636 |
-
),
|
| 637 |
-
value=False,
|
| 638 |
-
interactive=True,
|
| 639 |
-
)
|
| 640 |
-
cache_dataset_in_gpu = gr.Checkbox(
|
| 641 |
-
label=i18n("Cache Dataset in GPU"),
|
| 642 |
-
info=i18n(
|
| 643 |
-
"Cache the dataset in GPU memory to speed up the training process."
|
| 644 |
-
),
|
| 645 |
-
value=False,
|
| 646 |
-
interactive=True,
|
| 647 |
-
)
|
| 648 |
-
checkpointing = gr.Checkbox(
|
| 649 |
-
label=i18n("Checkpointing"),
|
| 650 |
-
info=i18n(
|
| 651 |
-
"Enables memory-efficient training. This reduces VRAM usage at the cost of slower training speed. It is useful for GPUs with limited memory (e.g., <6GB VRAM) or when training with a batch size larger than what your GPU can normally accommodate."
|
| 652 |
-
),
|
| 653 |
-
value=False,
|
| 654 |
-
interactive=True,
|
| 655 |
-
)
|
| 656 |
-
with gr.Row():
|
| 657 |
-
custom_pretrained = gr.Checkbox(
|
| 658 |
-
label=i18n("Custom Pretrained"),
|
| 659 |
-
info=i18n(
|
| 660 |
-
"Utilizing custom pretrained models can lead to superior results, as selecting the most suitable pretrained models tailored to the specific use case can significantly enhance performance."
|
| 661 |
-
),
|
| 662 |
-
value=False,
|
| 663 |
-
interactive=True,
|
| 664 |
-
)
|
| 665 |
-
overtraining_detector = gr.Checkbox(
|
| 666 |
-
label=i18n("Overtraining Detector"),
|
| 667 |
-
info=i18n(
|
| 668 |
-
"Detect overtraining to prevent the model from learning the training data too well and losing the ability to generalize to new data."
|
| 669 |
-
),
|
| 670 |
-
value=False,
|
| 671 |
-
interactive=True,
|
| 672 |
-
)
|
| 673 |
-
with gr.Row():
|
| 674 |
-
with gr.Column(visible=False) as pretrained_custom_settings:
|
| 675 |
-
with gr.Accordion(i18n("Pretrained Custom Settings")):
|
| 676 |
-
upload_pretrained = gr.File(
|
| 677 |
-
label=i18n("Upload Pretrained Model"),
|
| 678 |
-
type="filepath",
|
| 679 |
-
interactive=True,
|
| 680 |
-
)
|
| 681 |
-
refresh_custom_pretaineds_button = gr.Button(
|
| 682 |
-
i18n("Refresh Custom Pretraineds")
|
| 683 |
-
)
|
| 684 |
-
g_pretrained_path = gr.Dropdown(
|
| 685 |
-
label=i18n("Custom Pretrained G"),
|
| 686 |
-
info=i18n(
|
| 687 |
-
"Select the custom pretrained model for the generator."
|
| 688 |
-
),
|
| 689 |
-
choices=sorted(pretraineds_list_g),
|
| 690 |
-
interactive=True,
|
| 691 |
-
allow_custom_value=True,
|
| 692 |
-
)
|
| 693 |
-
d_pretrained_path = gr.Dropdown(
|
| 694 |
-
label=i18n("Custom Pretrained D"),
|
| 695 |
-
info=i18n(
|
| 696 |
-
"Select the custom pretrained model for the discriminator."
|
| 697 |
-
),
|
| 698 |
-
choices=sorted(pretraineds_list_d),
|
| 699 |
-
interactive=True,
|
| 700 |
-
allow_custom_value=True,
|
| 701 |
-
)
|
| 702 |
-
|
| 703 |
-
with gr.Column(visible=False) as overtraining_settings:
|
| 704 |
-
with gr.Accordion(i18n("Overtraining Detector Settings")):
|
| 705 |
-
overtraining_threshold = gr.Slider(
|
| 706 |
-
1,
|
| 707 |
-
100,
|
| 708 |
-
50,
|
| 709 |
-
step=1,
|
| 710 |
-
label=i18n("Overtraining Threshold"),
|
| 711 |
-
info=i18n(
|
| 712 |
-
"Set the maximum number of epochs you want your model to stop training if no improvement is detected."
|
| 713 |
-
),
|
| 714 |
-
interactive=True,
|
| 715 |
-
)
|
| 716 |
-
index_algorithm = gr.Radio(
|
| 717 |
-
label=i18n("Index Algorithm"),
|
| 718 |
-
info=i18n(
|
| 719 |
-
"KMeans is a clustering algorithm that divides the dataset into K clusters. This setting is particularly useful for large datasets."
|
| 720 |
-
),
|
| 721 |
-
choices=["Auto", "Faiss", "KMeans"],
|
| 722 |
-
value="Auto",
|
| 723 |
-
interactive=True,
|
| 724 |
-
)
|
| 725 |
-
|
| 726 |
-
def enforce_terms(terms_accepted, *args):
|
| 727 |
-
if not terms_accepted:
|
| 728 |
-
message = "You must agree to the Terms of Use to proceed."
|
| 729 |
-
gr.Info(message)
|
| 730 |
-
return message
|
| 731 |
-
return run_train_script(*args)
|
| 732 |
-
|
| 733 |
-
terms_checkbox = gr.Checkbox(
|
| 734 |
-
label=i18n("I agree to the terms of use"),
|
| 735 |
-
info=i18n(
|
| 736 |
-
"Please ensure compliance with the terms and conditions detailed in [this document](https://github.com/IAHispano/Applio/blob/main/TERMS_OF_USE.md) before proceeding with your training."
|
| 737 |
-
),
|
| 738 |
-
value=
|
| 739 |
-
interactive=True,
|
| 740 |
-
)
|
| 741 |
-
train_output_info = gr.Textbox(
|
| 742 |
-
label=i18n("Output Information"),
|
| 743 |
-
info=i18n("The output information will be displayed here."),
|
| 744 |
-
value="",
|
| 745 |
-
max_lines=8,
|
| 746 |
-
interactive=False,
|
| 747 |
-
)
|
| 748 |
-
|
| 749 |
-
with gr.Row():
|
| 750 |
-
train_button = gr.Button(i18n("Start Training"))
|
| 751 |
-
train_button.click(
|
| 752 |
-
fn=enforce_terms,
|
| 753 |
-
inputs=[
|
| 754 |
-
terms_checkbox,
|
| 755 |
-
model_name,
|
| 756 |
-
save_every_epoch,
|
| 757 |
-
save_only_latest,
|
| 758 |
-
save_every_weights,
|
| 759 |
-
total_epoch,
|
| 760 |
-
sampling_rate,
|
| 761 |
-
batch_size,
|
| 762 |
-
gpu,
|
| 763 |
-
overtraining_detector,
|
| 764 |
-
overtraining_threshold,
|
| 765 |
-
pretrained,
|
| 766 |
-
cleanup,
|
| 767 |
-
index_algorithm,
|
| 768 |
-
cache_dataset_in_gpu,
|
| 769 |
-
custom_pretrained,
|
| 770 |
-
g_pretrained_path,
|
| 771 |
-
d_pretrained_path,
|
| 772 |
-
vocoder,
|
| 773 |
-
checkpointing,
|
| 774 |
-
],
|
| 775 |
-
outputs=[train_output_info],
|
| 776 |
-
)
|
| 777 |
-
|
| 778 |
-
stop_train_button = gr.Button(i18n("Stop Training"), visible=False)
|
| 779 |
-
stop_train_button.click(
|
| 780 |
-
fn=stop_train,
|
| 781 |
-
inputs=[model_name],
|
| 782 |
-
outputs=[],
|
| 783 |
-
)
|
| 784 |
-
|
| 785 |
-
index_button = gr.Button(i18n("Generate Index"))
|
| 786 |
-
index_button.click(
|
| 787 |
-
fn=run_index_script,
|
| 788 |
-
inputs=[model_name, index_algorithm],
|
| 789 |
-
outputs=[train_output_info],
|
| 790 |
-
)
|
| 791 |
-
|
| 792 |
-
# Export Model section
|
| 793 |
-
with gr.Accordion(i18n("Export Model"), open=False):
|
| 794 |
-
if not os.name == "nt":
|
| 795 |
-
gr.Markdown(
|
| 796 |
-
i18n(
|
| 797 |
-
"The button 'Upload' is only for google colab: Uploads the exported files to the ApplioExported folder in your Google Drive."
|
| 798 |
-
)
|
| 799 |
-
)
|
| 800 |
-
with gr.Row():
|
| 801 |
-
with gr.Column():
|
| 802 |
-
pth_file_export = gr.File(
|
| 803 |
-
label=i18n("Exported Pth file"),
|
| 804 |
-
type="filepath",
|
| 805 |
-
value=None,
|
| 806 |
-
interactive=False,
|
| 807 |
-
)
|
| 808 |
-
pth_dropdown_export = gr.Dropdown(
|
| 809 |
-
label=i18n("Pth file"),
|
| 810 |
-
info=i18n("Select the pth file to be exported"),
|
| 811 |
-
choices=get_pth_list(),
|
| 812 |
-
value=None,
|
| 813 |
-
interactive=True,
|
| 814 |
-
allow_custom_value=True,
|
| 815 |
-
)
|
| 816 |
-
with gr.Column():
|
| 817 |
-
index_file_export = gr.File(
|
| 818 |
-
label=i18n("Exported Index File"),
|
| 819 |
-
type="filepath",
|
| 820 |
-
value=None,
|
| 821 |
-
interactive=False,
|
| 822 |
-
)
|
| 823 |
-
index_dropdown_export = gr.Dropdown(
|
| 824 |
-
label=i18n("Index File"),
|
| 825 |
-
info=i18n("Select the index file to be exported"),
|
| 826 |
-
choices=get_index_list(),
|
| 827 |
-
value=None,
|
| 828 |
-
interactive=True,
|
| 829 |
-
allow_custom_value=True,
|
| 830 |
-
)
|
| 831 |
-
with gr.Row():
|
| 832 |
-
with gr.Column():
|
| 833 |
-
refresh_export = gr.Button(i18n("Refresh"))
|
| 834 |
-
if not os.name == "nt":
|
| 835 |
-
upload_exported = gr.Button(i18n("Upload"))
|
| 836 |
-
upload_exported.click(
|
| 837 |
-
fn=upload_to_google_drive,
|
| 838 |
-
inputs=[pth_dropdown_export, index_dropdown_export],
|
| 839 |
-
outputs=[],
|
| 840 |
-
)
|
| 841 |
-
|
| 842 |
-
def toggle_visible(checkbox):
|
| 843 |
-
return {"visible": checkbox, "__type__": "update"}
|
| 844 |
-
|
| 845 |
-
def toggle_visible_hop_length(f0_method):
|
| 846 |
-
if f0_method == "crepe" or f0_method == "crepe-tiny":
|
| 847 |
-
return {"visible": True, "__type__": "update"}
|
| 848 |
-
return {"visible": False, "__type__": "update"}
|
| 849 |
-
|
| 850 |
-
def toggle_pretrained(pretrained, custom_pretrained):
|
| 851 |
-
if custom_pretrained == False:
|
| 852 |
-
return {"visible": pretrained, "__type__": "update"}, {
|
| 853 |
-
"visible": False,
|
| 854 |
-
"__type__": "update",
|
| 855 |
-
}
|
| 856 |
-
else:
|
| 857 |
-
return {"visible": pretrained, "__type__": "update"}, {
|
| 858 |
-
"visible": pretrained,
|
| 859 |
-
"__type__": "update",
|
| 860 |
-
}
|
| 861 |
-
|
| 862 |
-
def enable_stop_train_button():
|
| 863 |
-
return {"visible": False, "__type__": "update"}, {
|
| 864 |
-
"visible": True,
|
| 865 |
-
"__type__": "update",
|
| 866 |
-
}
|
| 867 |
-
|
| 868 |
-
def disable_stop_train_button():
|
| 869 |
-
return {"visible": True, "__type__": "update"}, {
|
| 870 |
-
"visible": False,
|
| 871 |
-
"__type__": "update",
|
| 872 |
-
}
|
| 873 |
-
|
| 874 |
-
def download_prerequisites():
|
| 875 |
-
gr.Info(
|
| 876 |
-
"Checking for prerequisites with pitch guidance... Missing files will be downloaded. If you already have them, this step will be skipped."
|
| 877 |
-
)
|
| 878 |
-
run_prerequisites_script(
|
| 879 |
-
pretraineds_hifigan=True,
|
| 880 |
-
models=False,
|
| 881 |
-
exe=False,
|
| 882 |
-
)
|
| 883 |
-
gr.Info(
|
| 884 |
-
"Prerequisites check complete. Missing files were downloaded, and you may now start preprocessing."
|
| 885 |
-
)
|
| 886 |
-
|
| 887 |
-
def toggle_visible_embedder_custom(embedder_model):
|
| 888 |
-
if embedder_model == "custom":
|
| 889 |
-
return {"visible": True, "__type__": "update"}
|
| 890 |
-
return {"visible": False, "__type__": "update"}
|
| 891 |
-
|
| 892 |
-
def toggle_architecture(architecture):
|
| 893 |
-
if architecture == "Applio":
|
| 894 |
-
return {
|
| 895 |
-
"choices": ["32000", "40000", "44100", "48000"],
|
| 896 |
-
"__type__": "update",
|
| 897 |
-
}, {
|
| 898 |
-
"interactive": True,
|
| 899 |
-
"__type__": "update",
|
| 900 |
-
}
|
| 901 |
-
else:
|
| 902 |
-
return {
|
| 903 |
-
"choices": ["32000", "40000", "48000"],
|
| 904 |
-
"__type__": "update",
|
| 905 |
-
"value": "40000",
|
| 906 |
-
}, {"interactive": False, "__type__": "update", "value": "HiFi-GAN"}
|
| 907 |
-
|
| 908 |
-
def update_slider_visibility(noise_reduction):
|
| 909 |
-
return gr.update(visible=noise_reduction)
|
| 910 |
-
|
| 911 |
-
noise_reduction.change(
|
| 912 |
-
fn=update_slider_visibility,
|
| 913 |
-
inputs=noise_reduction,
|
| 914 |
-
outputs=clean_strength,
|
| 915 |
-
)
|
| 916 |
-
architecture.change(
|
| 917 |
-
fn=toggle_architecture,
|
| 918 |
-
inputs=[architecture],
|
| 919 |
-
outputs=[sampling_rate, vocoder],
|
| 920 |
-
)
|
| 921 |
-
refresh.click(
|
| 922 |
-
fn=refresh_models_and_datasets,
|
| 923 |
-
inputs=[],
|
| 924 |
-
outputs=[model_name, dataset_path],
|
| 925 |
-
)
|
| 926 |
-
dataset_creator.change(
|
| 927 |
-
fn=toggle_visible,
|
| 928 |
-
inputs=[dataset_creator],
|
| 929 |
-
outputs=[dataset_creator_settings],
|
| 930 |
-
)
|
| 931 |
-
upload_audio_dataset.upload(
|
| 932 |
-
fn=save_drop_dataset_audio,
|
| 933 |
-
inputs=[upload_audio_dataset, dataset_name],
|
| 934 |
-
outputs=[upload_audio_dataset, dataset_path],
|
| 935 |
-
)
|
| 936 |
-
f0_method.change(
|
| 937 |
-
fn=toggle_visible_hop_length,
|
| 938 |
-
inputs=[f0_method],
|
| 939 |
-
outputs=[hop_length],
|
| 940 |
-
)
|
| 941 |
-
embedder_model.change(
|
| 942 |
-
fn=toggle_visible_embedder_custom,
|
| 943 |
-
inputs=[embedder_model],
|
| 944 |
-
outputs=[embedder_custom],
|
| 945 |
-
)
|
| 946 |
-
embedder_model.change(
|
| 947 |
-
fn=toggle_visible_embedder_custom,
|
| 948 |
-
inputs=[embedder_model],
|
| 949 |
-
outputs=[embedder_custom],
|
| 950 |
-
)
|
| 951 |
-
move_files_button.click(
|
| 952 |
-
fn=create_folder_and_move_files,
|
| 953 |
-
inputs=[folder_name_input, bin_file_upload, config_file_upload],
|
| 954 |
-
outputs=[],
|
| 955 |
-
)
|
| 956 |
-
refresh_embedders_button.click(
|
| 957 |
-
fn=refresh_embedders_folders, inputs=[], outputs=[embedder_model_custom]
|
| 958 |
-
)
|
| 959 |
-
pretrained.change(
|
| 960 |
-
fn=toggle_pretrained,
|
| 961 |
-
inputs=[pretrained, custom_pretrained],
|
| 962 |
-
outputs=[custom_pretrained, pretrained_custom_settings],
|
| 963 |
-
)
|
| 964 |
-
custom_pretrained.change(
|
| 965 |
-
fn=toggle_visible,
|
| 966 |
-
inputs=[custom_pretrained],
|
| 967 |
-
outputs=[pretrained_custom_settings],
|
| 968 |
-
)
|
| 969 |
-
refresh_custom_pretaineds_button.click(
|
| 970 |
-
fn=refresh_custom_pretraineds,
|
| 971 |
-
inputs=[],
|
| 972 |
-
outputs=[g_pretrained_path, d_pretrained_path],
|
| 973 |
-
)
|
| 974 |
-
upload_pretrained.upload(
|
| 975 |
-
fn=save_drop_model,
|
| 976 |
-
inputs=[upload_pretrained],
|
| 977 |
-
outputs=[upload_pretrained],
|
| 978 |
-
)
|
| 979 |
-
overtraining_detector.change(
|
| 980 |
-
fn=toggle_visible,
|
| 981 |
-
inputs=[overtraining_detector],
|
| 982 |
-
outputs=[overtraining_settings],
|
| 983 |
-
)
|
| 984 |
-
train_button.click(
|
| 985 |
-
fn=enable_stop_train_button,
|
| 986 |
-
inputs=[],
|
| 987 |
-
outputs=[train_button, stop_train_button],
|
| 988 |
-
)
|
| 989 |
-
train_output_info.change(
|
| 990 |
-
fn=disable_stop_train_button,
|
| 991 |
-
inputs=[],
|
| 992 |
-
outputs=[train_button, stop_train_button],
|
| 993 |
-
)
|
| 994 |
-
pth_dropdown_export.change(
|
| 995 |
-
fn=export_pth,
|
| 996 |
-
inputs=[pth_dropdown_export],
|
| 997 |
-
outputs=[pth_file_export],
|
| 998 |
-
)
|
| 999 |
-
index_dropdown_export.change(
|
| 1000 |
-
fn=export_index,
|
| 1001 |
-
inputs=[index_dropdown_export],
|
| 1002 |
-
outputs=[index_file_export],
|
| 1003 |
-
)
|
| 1004 |
-
refresh_export.click(
|
| 1005 |
-
fn=refresh_pth_and_index_list,
|
| 1006 |
-
inputs=[],
|
| 1007 |
-
outputs=[pth_dropdown_export, index_dropdown_export],
|
| 1008 |
-
)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import sys
|
| 4 |
+
from multiprocessing import cpu_count
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from assets.i18n.i18n import I18nAuto
|
| 9 |
+
from core import (
|
| 10 |
+
run_extract_script,
|
| 11 |
+
run_index_script,
|
| 12 |
+
run_preprocess_script,
|
| 13 |
+
run_prerequisites_script,
|
| 14 |
+
run_train_script,
|
| 15 |
+
)
|
| 16 |
+
from rvc.configs.config import get_gpu_info, get_number_of_gpus, max_vram_gpu
|
| 17 |
+
from rvc.lib.utils import format_title
|
| 18 |
+
from tabs.settings.sections.restart import stop_train
|
| 19 |
+
|
| 20 |
+
i18n = I18nAuto()
|
| 21 |
+
now_dir = os.getcwd()
|
| 22 |
+
sys.path.append(now_dir)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
sup_audioext = {
|
| 26 |
+
"wav",
|
| 27 |
+
"mp3",
|
| 28 |
+
"flac",
|
| 29 |
+
"ogg",
|
| 30 |
+
"opus",
|
| 31 |
+
"m4a",
|
| 32 |
+
"mp4",
|
| 33 |
+
"aac",
|
| 34 |
+
"alac",
|
| 35 |
+
"wma",
|
| 36 |
+
"aiff",
|
| 37 |
+
"webm",
|
| 38 |
+
"ac3",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Custom Pretraineds
|
| 42 |
+
pretraineds_custom_path = os.path.join(
|
| 43 |
+
now_dir, "rvc", "models", "pretraineds", "pretraineds_custom"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)
|
| 47 |
+
|
| 48 |
+
custom_embedder_root = os.path.join(
|
| 49 |
+
now_dir, "rvc", "models", "embedders", "embedders_custom"
|
| 50 |
+
)
|
| 51 |
+
custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)
|
| 52 |
+
|
| 53 |
+
os.makedirs(custom_embedder_root, exist_ok=True)
|
| 54 |
+
os.makedirs(pretraineds_custom_path_relative, exist_ok=True)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def get_pretrained_list(suffix):
|
| 58 |
+
return [
|
| 59 |
+
os.path.join(dirpath, filename)
|
| 60 |
+
for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
|
| 61 |
+
for filename in filenames
|
| 62 |
+
if filename.endswith(".pth") and suffix in filename
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
pretraineds_list_d = get_pretrained_list("D")
|
| 67 |
+
pretraineds_list_g = get_pretrained_list("G")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def refresh_custom_pretraineds():
|
| 71 |
+
return (
|
| 72 |
+
{"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
|
| 73 |
+
{"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Dataset Creator
|
| 78 |
+
datasets_path = os.path.join(now_dir, "assets", "datasets")
|
| 79 |
+
|
| 80 |
+
if not os.path.exists(datasets_path):
|
| 81 |
+
os.makedirs(datasets_path)
|
| 82 |
+
|
| 83 |
+
datasets_path_relative = os.path.relpath(datasets_path, now_dir)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_datasets_list():
|
| 87 |
+
return [
|
| 88 |
+
dirpath
|
| 89 |
+
for dirpath, _, filenames in os.walk(datasets_path_relative)
|
| 90 |
+
if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def refresh_datasets():
|
| 95 |
+
return {"choices": sorted(get_datasets_list()), "__type__": "update"}
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Model Names
|
| 99 |
+
models_path = os.path.join(now_dir, "logs")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_models_list():
|
| 103 |
+
return [
|
| 104 |
+
os.path.basename(dirpath)
|
| 105 |
+
for dirpath in os.listdir(models_path)
|
| 106 |
+
if os.path.isdir(os.path.join(models_path, dirpath))
|
| 107 |
+
and all(excluded not in dirpath for excluded in ["zips", "mute", "reference"])
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def refresh_models():
|
| 112 |
+
return {"choices": sorted(get_models_list()), "__type__": "update"}
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# Refresh Models and Datasets
|
| 116 |
+
def refresh_models_and_datasets():
|
| 117 |
+
return (
|
| 118 |
+
{"choices": sorted(get_models_list()), "__type__": "update"},
|
| 119 |
+
{"choices": sorted(get_datasets_list()), "__type__": "update"},
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# Refresh Custom Embedders
|
| 124 |
+
def get_embedder_custom_list():
|
| 125 |
+
return [
|
| 126 |
+
os.path.join(dirpath, dirname)
|
| 127 |
+
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
| 128 |
+
for dirname in dirnames
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def refresh_custom_embedder_list():
|
| 133 |
+
return {"choices": sorted(get_embedder_custom_list()), "__type__": "update"}
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# Drop Model
|
| 137 |
+
def save_drop_model(dropbox):
|
| 138 |
+
if ".pth" not in dropbox:
|
| 139 |
+
gr.Info(
|
| 140 |
+
i18n(
|
| 141 |
+
"The file you dropped is not a valid pretrained file. Please try again."
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
file_name = os.path.basename(dropbox)
|
| 146 |
+
pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
|
| 147 |
+
if os.path.exists(pretrained_path):
|
| 148 |
+
os.remove(pretrained_path)
|
| 149 |
+
shutil.copy(dropbox, pretrained_path)
|
| 150 |
+
gr.Info(
|
| 151 |
+
i18n(
|
| 152 |
+
"Click the refresh button to see the pretrained file in the dropdown menu."
|
| 153 |
+
)
|
| 154 |
+
)
|
| 155 |
+
return None
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Drop Dataset
|
| 159 |
+
def save_drop_dataset_audio(dropbox, dataset_name):
|
| 160 |
+
if not dataset_name:
|
| 161 |
+
gr.Info("Please enter a valid dataset name. Please try again.")
|
| 162 |
+
return None, None
|
| 163 |
+
else:
|
| 164 |
+
file_extension = os.path.splitext(dropbox)[1][1:].lower()
|
| 165 |
+
if file_extension not in sup_audioext:
|
| 166 |
+
gr.Info("The file you dropped is not a valid audio file. Please try again.")
|
| 167 |
+
else:
|
| 168 |
+
dataset_name = format_title(dataset_name)
|
| 169 |
+
audio_file = format_title(os.path.basename(dropbox))
|
| 170 |
+
dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
|
| 171 |
+
if not os.path.exists(dataset_path):
|
| 172 |
+
os.makedirs(dataset_path)
|
| 173 |
+
destination_path = os.path.join(dataset_path, audio_file)
|
| 174 |
+
if os.path.exists(destination_path):
|
| 175 |
+
os.remove(destination_path)
|
| 176 |
+
shutil.copy(dropbox, destination_path)
|
| 177 |
+
gr.Info(
|
| 178 |
+
i18n(
|
| 179 |
+
"The audio file has been successfully added to the dataset. Please click the preprocess button."
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
dataset_path = os.path.dirname(destination_path)
|
| 183 |
+
relative_dataset_path = os.path.relpath(dataset_path, now_dir)
|
| 184 |
+
|
| 185 |
+
return None, relative_dataset_path
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Drop Custom Embedder
|
| 189 |
+
def create_folder_and_move_files(folder_name, bin_file, config_file):
|
| 190 |
+
if not folder_name:
|
| 191 |
+
return "Folder name must not be empty."
|
| 192 |
+
|
| 193 |
+
folder_name = os.path.join(custom_embedder_root, folder_name)
|
| 194 |
+
os.makedirs(folder_name, exist_ok=True)
|
| 195 |
+
|
| 196 |
+
if bin_file:
|
| 197 |
+
bin_file_path = os.path.join(folder_name, os.path.basename(bin_file))
|
| 198 |
+
shutil.copy(bin_file, bin_file_path)
|
| 199 |
+
|
| 200 |
+
if config_file:
|
| 201 |
+
config_file_path = os.path.join(folder_name, os.path.basename(config_file))
|
| 202 |
+
shutil.copy(config_file, config_file_path)
|
| 203 |
+
|
| 204 |
+
return f"Files moved to folder {folder_name}"
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def refresh_embedders_folders():
|
| 208 |
+
custom_embedders = [
|
| 209 |
+
os.path.join(dirpath, dirname)
|
| 210 |
+
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
| 211 |
+
for dirname in dirnames
|
| 212 |
+
]
|
| 213 |
+
return custom_embedders
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Export
|
| 217 |
+
## Get Pth and Index Files
|
| 218 |
+
def get_pth_list():
|
| 219 |
+
return [
|
| 220 |
+
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
| 221 |
+
for dirpath, _, filenames in os.walk(models_path)
|
| 222 |
+
for filename in filenames
|
| 223 |
+
if filename.endswith(".pth")
|
| 224 |
+
]
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def get_index_list():
|
| 228 |
+
return [
|
| 229 |
+
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
| 230 |
+
for dirpath, _, filenames in os.walk(models_path)
|
| 231 |
+
for filename in filenames
|
| 232 |
+
if filename.endswith(".index") and "trained" not in filename
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def refresh_pth_and_index_list():
|
| 237 |
+
return (
|
| 238 |
+
{"choices": sorted(get_pth_list()), "__type__": "update"},
|
| 239 |
+
{"choices": sorted(get_index_list()), "__type__": "update"},
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
## Export Pth and Index Files
|
| 244 |
+
def export_pth(pth_path):
|
| 245 |
+
if pth_path and os.path.exists(pth_path):
|
| 246 |
+
return pth_path
|
| 247 |
+
return None
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def export_index(index_path):
|
| 251 |
+
if index_path and os.path.exists(index_path):
|
| 252 |
+
return index_path
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
## Upload to Google Drive
|
| 257 |
+
def upload_to_google_drive(pth_path, index_path):
|
| 258 |
+
def upload_file(file_path):
|
| 259 |
+
if file_path:
|
| 260 |
+
try:
|
| 261 |
+
gr.Info(f"Uploading {pth_path} to Google Drive...")
|
| 262 |
+
google_drive_folder = "/content/drive/MyDrive/ApplioExported"
|
| 263 |
+
if not os.path.exists(google_drive_folder):
|
| 264 |
+
os.makedirs(google_drive_folder)
|
| 265 |
+
google_drive_file_path = os.path.join(
|
| 266 |
+
google_drive_folder, os.path.basename(file_path)
|
| 267 |
+
)
|
| 268 |
+
if os.path.exists(google_drive_file_path):
|
| 269 |
+
os.remove(google_drive_file_path)
|
| 270 |
+
shutil.copy2(file_path, google_drive_file_path)
|
| 271 |
+
gr.Info("File uploaded successfully.")
|
| 272 |
+
except Exception as error:
|
| 273 |
+
print(f"An error occurred uploading to Google Drive: {error}")
|
| 274 |
+
gr.Info("Error uploading to Google Drive")
|
| 275 |
+
|
| 276 |
+
upload_file(pth_path)
|
| 277 |
+
upload_file(index_path)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# Train Tab
|
| 281 |
+
def train_tab():
|
| 282 |
+
# Model settings section
|
| 283 |
+
with gr.Accordion(i18n("Model Settings")):
|
| 284 |
+
with gr.Row():
|
| 285 |
+
with gr.Column():
|
| 286 |
+
model_name = gr.Dropdown(
|
| 287 |
+
label=i18n("Model Name"),
|
| 288 |
+
info=i18n("Name of the new model."),
|
| 289 |
+
choices=get_models_list(),
|
| 290 |
+
value="my-project",
|
| 291 |
+
interactive=True,
|
| 292 |
+
allow_custom_value=True,
|
| 293 |
+
)
|
| 294 |
+
architecture = gr.Radio(
|
| 295 |
+
label=i18n("Architecture"),
|
| 296 |
+
info=i18n(
|
| 297 |
+
"Choose the model architecture:\n- **RVC (V2)**: Default option, compatible with all clients.\n- **Applio**: Advanced quality with improved vocoders and higher sample rates, Applio-only."
|
| 298 |
+
),
|
| 299 |
+
choices=["RVC", "Applio"],
|
| 300 |
+
value="RVC",
|
| 301 |
+
interactive=True,
|
| 302 |
+
visible=True,
|
| 303 |
+
)
|
| 304 |
+
with gr.Column():
|
| 305 |
+
sampling_rate = gr.Radio(
|
| 306 |
+
label=i18n("Sampling Rate"),
|
| 307 |
+
info=i18n("The sampling rate of the audio files."),
|
| 308 |
+
choices=["32000", "40000", "48000"],
|
| 309 |
+
value="40000",
|
| 310 |
+
interactive=True,
|
| 311 |
+
)
|
| 312 |
+
vocoder = gr.Radio(
|
| 313 |
+
label=i18n("Vocoder"),
|
| 314 |
+
info=i18n(
|
| 315 |
+
"Choose the vocoder for audio synthesis:\n- **HiFi-GAN**: Default option, compatible with all clients.\n- **MRF HiFi-GAN**: Higher fidelity, Applio-only.\n- **RefineGAN**: Superior audio quality, Applio-only."
|
| 316 |
+
),
|
| 317 |
+
choices=["HiFi-GAN", "MRF HiFi-GAN", "RefineGAN"],
|
| 318 |
+
value="HiFi-GAN",
|
| 319 |
+
interactive=False,
|
| 320 |
+
visible=True,
|
| 321 |
+
)
|
| 322 |
+
with gr.Accordion(
|
| 323 |
+
i18n("Advanced Settings"),
|
| 324 |
+
open=False,
|
| 325 |
+
):
|
| 326 |
+
with gr.Row():
|
| 327 |
+
with gr.Column():
|
| 328 |
+
cpu_cores = gr.Slider(
|
| 329 |
+
1,
|
| 330 |
+
min(cpu_count(), 32), # max 32 parallel processes
|
| 331 |
+
min(cpu_count(), 32),
|
| 332 |
+
step=1,
|
| 333 |
+
label=i18n("CPU Cores"),
|
| 334 |
+
info=i18n(
|
| 335 |
+
"The number of CPU cores to use in the extraction process. The default setting are your cpu cores, which is recommended for most cases."
|
| 336 |
+
),
|
| 337 |
+
interactive=True,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
with gr.Column():
|
| 341 |
+
gpu = gr.Textbox(
|
| 342 |
+
label=i18n("GPU Number"),
|
| 343 |
+
info=i18n(
|
| 344 |
+
"Specify the number of GPUs you wish to utilize for extracting by entering them separated by hyphens (-)."
|
| 345 |
+
),
|
| 346 |
+
placeholder=i18n("0 to ∞ separated by -"),
|
| 347 |
+
value=str(get_number_of_gpus()),
|
| 348 |
+
interactive=True,
|
| 349 |
+
)
|
| 350 |
+
gr.Textbox(
|
| 351 |
+
label=i18n("GPU Information"),
|
| 352 |
+
info=i18n("The GPU information will be displayed here."),
|
| 353 |
+
value=get_gpu_info(),
|
| 354 |
+
interactive=False,
|
| 355 |
+
)
|
| 356 |
+
# Preprocess section
|
| 357 |
+
with gr.Accordion(i18n("Preprocess")):
|
| 358 |
+
dataset_path = gr.Dropdown(
|
| 359 |
+
label=i18n("Dataset Path"),
|
| 360 |
+
info=i18n("Path to the dataset folder."),
|
| 361 |
+
# placeholder=i18n("Enter dataset path"),
|
| 362 |
+
choices=get_datasets_list(),
|
| 363 |
+
allow_custom_value=True,
|
| 364 |
+
interactive=True,
|
| 365 |
+
)
|
| 366 |
+
dataset_creator = gr.Checkbox(
|
| 367 |
+
label=i18n("Dataset Creator"),
|
| 368 |
+
value=False,
|
| 369 |
+
interactive=True,
|
| 370 |
+
visible=True,
|
| 371 |
+
)
|
| 372 |
+
with gr.Column(visible=False) as dataset_creator_settings:
|
| 373 |
+
with gr.Accordion(i18n("Dataset Creator")):
|
| 374 |
+
dataset_name = gr.Textbox(
|
| 375 |
+
label=i18n("Dataset Name"),
|
| 376 |
+
info=i18n("Name of the new dataset."),
|
| 377 |
+
placeholder=i18n("Enter dataset name"),
|
| 378 |
+
interactive=True,
|
| 379 |
+
)
|
| 380 |
+
upload_audio_dataset = gr.File(
|
| 381 |
+
label=i18n("Upload Audio Dataset"),
|
| 382 |
+
type="filepath",
|
| 383 |
+
interactive=True,
|
| 384 |
+
)
|
| 385 |
+
refresh = gr.Button(i18n("Refresh"))
|
| 386 |
+
|
| 387 |
+
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
| 388 |
+
cut_preprocess = gr.Radio(
|
| 389 |
+
label=i18n("Audio cutting"),
|
| 390 |
+
info=i18n(
|
| 391 |
+
"Audio file slicing method: Select 'Skip' if the files are already pre-sliced, 'Simple' if excessive silence has already been removed from the files, or 'Automatic' for automatic silence detection and slicing around it."
|
| 392 |
+
),
|
| 393 |
+
choices=["Skip", "Simple", "Automatic"],
|
| 394 |
+
value="Automatic",
|
| 395 |
+
interactive=True,
|
| 396 |
+
)
|
| 397 |
+
with gr.Row():
|
| 398 |
+
chunk_len = gr.Slider(
|
| 399 |
+
0.5,
|
| 400 |
+
5.0,
|
| 401 |
+
3.0,
|
| 402 |
+
step=0.1,
|
| 403 |
+
label=i18n("Chunk length (sec)"),
|
| 404 |
+
info=i18n("Length of the audio slice for 'Simple' method."),
|
| 405 |
+
interactive=True,
|
| 406 |
+
)
|
| 407 |
+
overlap_len = gr.Slider(
|
| 408 |
+
0.0,
|
| 409 |
+
0.4,
|
| 410 |
+
0.3,
|
| 411 |
+
step=0.1,
|
| 412 |
+
label=i18n("Overlap length (sec)"),
|
| 413 |
+
info=i18n(
|
| 414 |
+
"Length of the overlap between slices for 'Simple' method."
|
| 415 |
+
),
|
| 416 |
+
interactive=True,
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
with gr.Row():
|
| 420 |
+
process_effects = gr.Checkbox(
|
| 421 |
+
label=i18n("Process effects"),
|
| 422 |
+
info=i18n(
|
| 423 |
+
"It's recommended to deactivate this option if your dataset has already been processed."
|
| 424 |
+
),
|
| 425 |
+
value=True,
|
| 426 |
+
interactive=True,
|
| 427 |
+
visible=True,
|
| 428 |
+
)
|
| 429 |
+
noise_reduction = gr.Checkbox(
|
| 430 |
+
label=i18n("Noise Reduction"),
|
| 431 |
+
info=i18n(
|
| 432 |
+
"It's recommended keep deactivate this option if your dataset has already been processed."
|
| 433 |
+
),
|
| 434 |
+
value=False,
|
| 435 |
+
interactive=True,
|
| 436 |
+
visible=True,
|
| 437 |
+
)
|
| 438 |
+
clean_strength = gr.Slider(
|
| 439 |
+
minimum=0,
|
| 440 |
+
maximum=1,
|
| 441 |
+
label=i18n("Noise Reduction Strength"),
|
| 442 |
+
info=i18n(
|
| 443 |
+
"Set the clean-up level to the audio you want, the more you increase it the more it will clean up, but it is possible that the audio will be more compressed."
|
| 444 |
+
),
|
| 445 |
+
visible=False,
|
| 446 |
+
value=0.5,
|
| 447 |
+
interactive=True,
|
| 448 |
+
)
|
| 449 |
+
preprocess_output_info = gr.Textbox(
|
| 450 |
+
label=i18n("Output Information"),
|
| 451 |
+
info=i18n("The output information will be displayed here."),
|
| 452 |
+
value="",
|
| 453 |
+
max_lines=8,
|
| 454 |
+
interactive=False,
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
with gr.Row():
|
| 458 |
+
preprocess_button = gr.Button(i18n("Preprocess Dataset"))
|
| 459 |
+
preprocess_button.click(
|
| 460 |
+
fn=run_preprocess_script,
|
| 461 |
+
inputs=[
|
| 462 |
+
model_name,
|
| 463 |
+
dataset_path,
|
| 464 |
+
sampling_rate,
|
| 465 |
+
cpu_cores,
|
| 466 |
+
cut_preprocess,
|
| 467 |
+
process_effects,
|
| 468 |
+
noise_reduction,
|
| 469 |
+
clean_strength,
|
| 470 |
+
chunk_len,
|
| 471 |
+
overlap_len,
|
| 472 |
+
],
|
| 473 |
+
outputs=[preprocess_output_info],
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# Extract section
|
| 477 |
+
with gr.Accordion(i18n("Extract")):
|
| 478 |
+
with gr.Row():
|
| 479 |
+
f0_method = gr.Radio(
|
| 480 |
+
label=i18n("Pitch extraction algorithm"),
|
| 481 |
+
info=i18n(
|
| 482 |
+
"Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
|
| 483 |
+
),
|
| 484 |
+
choices=["crepe", "crepe-tiny", "rmvpe"],
|
| 485 |
+
value="rmvpe",
|
| 486 |
+
interactive=True,
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
embedder_model = gr.Radio(
|
| 490 |
+
label=i18n("Embedder Model"),
|
| 491 |
+
info=i18n("Model used for learning speaker embedding."),
|
| 492 |
+
choices=[
|
| 493 |
+
"contentvec",
|
| 494 |
+
"chinese-hubert-base",
|
| 495 |
+
"japanese-hubert-base",
|
| 496 |
+
"korean-hubert-base",
|
| 497 |
+
"custom",
|
| 498 |
+
],
|
| 499 |
+
value="contentvec",
|
| 500 |
+
interactive=True,
|
| 501 |
+
)
|
| 502 |
+
include_mutes = gr.Slider(
|
| 503 |
+
0,
|
| 504 |
+
10,
|
| 505 |
+
2,
|
| 506 |
+
step=1,
|
| 507 |
+
label=i18n("Silent training files"),
|
| 508 |
+
info=i18n(
|
| 509 |
+
"Adding several silent files to the training set enables the model to handle pure silence in inferred audio files. Select 0 if your dataset is clean and already contains segments of pure silence."
|
| 510 |
+
),
|
| 511 |
+
value=True,
|
| 512 |
+
interactive=True,
|
| 513 |
+
)
|
| 514 |
+
hop_length = gr.Slider(
|
| 515 |
+
1,
|
| 516 |
+
512,
|
| 517 |
+
128,
|
| 518 |
+
step=1,
|
| 519 |
+
label=i18n("Hop Length"),
|
| 520 |
+
info=i18n(
|
| 521 |
+
"Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
|
| 522 |
+
),
|
| 523 |
+
visible=False,
|
| 524 |
+
interactive=True,
|
| 525 |
+
)
|
| 526 |
+
with gr.Row(visible=False) as embedder_custom:
|
| 527 |
+
with gr.Accordion("Custom Embedder", open=True):
|
| 528 |
+
with gr.Row():
|
| 529 |
+
embedder_model_custom = gr.Dropdown(
|
| 530 |
+
label="Select Custom Embedder",
|
| 531 |
+
choices=refresh_embedders_folders(),
|
| 532 |
+
interactive=True,
|
| 533 |
+
allow_custom_value=True,
|
| 534 |
+
)
|
| 535 |
+
refresh_embedders_button = gr.Button("Refresh embedders")
|
| 536 |
+
folder_name_input = gr.Textbox(label="Folder Name", interactive=True)
|
| 537 |
+
with gr.Row():
|
| 538 |
+
bin_file_upload = gr.File(
|
| 539 |
+
label="Upload .bin", type="filepath", interactive=True
|
| 540 |
+
)
|
| 541 |
+
config_file_upload = gr.File(
|
| 542 |
+
label="Upload .json", type="filepath", interactive=True
|
| 543 |
+
)
|
| 544 |
+
move_files_button = gr.Button("Move files to custom embedder folder")
|
| 545 |
+
|
| 546 |
+
extract_output_info = gr.Textbox(
|
| 547 |
+
label=i18n("Output Information"),
|
| 548 |
+
info=i18n("The output information will be displayed here."),
|
| 549 |
+
value="",
|
| 550 |
+
max_lines=8,
|
| 551 |
+
interactive=False,
|
| 552 |
+
)
|
| 553 |
+
extract_button = gr.Button(i18n("Extract Features"))
|
| 554 |
+
extract_button.click(
|
| 555 |
+
fn=run_extract_script,
|
| 556 |
+
inputs=[
|
| 557 |
+
model_name,
|
| 558 |
+
f0_method,
|
| 559 |
+
hop_length,
|
| 560 |
+
cpu_cores,
|
| 561 |
+
gpu,
|
| 562 |
+
sampling_rate,
|
| 563 |
+
embedder_model,
|
| 564 |
+
embedder_model_custom,
|
| 565 |
+
include_mutes,
|
| 566 |
+
],
|
| 567 |
+
outputs=[extract_output_info],
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
# Training section
|
| 571 |
+
with gr.Accordion(i18n("Training")):
|
| 572 |
+
with gr.Row():
|
| 573 |
+
batch_size = gr.Slider(
|
| 574 |
+
1,
|
| 575 |
+
50,
|
| 576 |
+
max_vram_gpu(0),
|
| 577 |
+
step=1,
|
| 578 |
+
label=i18n("Batch Size"),
|
| 579 |
+
info=i18n(
|
| 580 |
+
"It's advisable to align it with the available VRAM of your GPU. A setting of 4 offers improved accuracy but slower processing, while 8 provides faster and standard results."
|
| 581 |
+
),
|
| 582 |
+
interactive=True,
|
| 583 |
+
)
|
| 584 |
+
save_every_epoch = gr.Slider(
|
| 585 |
+
1,
|
| 586 |
+
100,
|
| 587 |
+
10,
|
| 588 |
+
step=1,
|
| 589 |
+
label=i18n("Save Every Epoch"),
|
| 590 |
+
info=i18n("Determine at how many epochs the model will saved at."),
|
| 591 |
+
interactive=True,
|
| 592 |
+
)
|
| 593 |
+
total_epoch = gr.Slider(
|
| 594 |
+
1,
|
| 595 |
+
10000,
|
| 596 |
+
500,
|
| 597 |
+
step=1,
|
| 598 |
+
label=i18n("Total Epoch"),
|
| 599 |
+
info=i18n(
|
| 600 |
+
"Specifies the overall quantity of epochs for the model training process."
|
| 601 |
+
),
|
| 602 |
+
interactive=True,
|
| 603 |
+
)
|
| 604 |
+
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
| 605 |
+
with gr.Row():
|
| 606 |
+
with gr.Column():
|
| 607 |
+
save_only_latest = gr.Checkbox(
|
| 608 |
+
label=i18n("Save Only Latest"),
|
| 609 |
+
info=i18n(
|
| 610 |
+
"Enabling this setting will result in the G and D files saving only their most recent versions, effectively conserving storage space."
|
| 611 |
+
),
|
| 612 |
+
value=True,
|
| 613 |
+
interactive=True,
|
| 614 |
+
)
|
| 615 |
+
save_every_weights = gr.Checkbox(
|
| 616 |
+
label=i18n("Save Every Weights"),
|
| 617 |
+
info=i18n(
|
| 618 |
+
"This setting enables you to save the weights of the model at the conclusion of each epoch."
|
| 619 |
+
),
|
| 620 |
+
value=True,
|
| 621 |
+
interactive=True,
|
| 622 |
+
)
|
| 623 |
+
pretrained = gr.Checkbox(
|
| 624 |
+
label=i18n("Pretrained"),
|
| 625 |
+
info=i18n(
|
| 626 |
+
"Utilize pretrained models when training your own. This approach reduces training duration and enhances overall quality."
|
| 627 |
+
),
|
| 628 |
+
value=True,
|
| 629 |
+
interactive=True,
|
| 630 |
+
)
|
| 631 |
+
with gr.Column():
|
| 632 |
+
cleanup = gr.Checkbox(
|
| 633 |
+
label=i18n("Fresh Training"),
|
| 634 |
+
info=i18n(
|
| 635 |
+
"Enable this setting only if you are training a new model from scratch or restarting the training. Deletes all previously generated weights and tensorboard logs."
|
| 636 |
+
),
|
| 637 |
+
value=False,
|
| 638 |
+
interactive=True,
|
| 639 |
+
)
|
| 640 |
+
cache_dataset_in_gpu = gr.Checkbox(
|
| 641 |
+
label=i18n("Cache Dataset in GPU"),
|
| 642 |
+
info=i18n(
|
| 643 |
+
"Cache the dataset in GPU memory to speed up the training process."
|
| 644 |
+
),
|
| 645 |
+
value=False,
|
| 646 |
+
interactive=True,
|
| 647 |
+
)
|
| 648 |
+
checkpointing = gr.Checkbox(
|
| 649 |
+
label=i18n("Checkpointing"),
|
| 650 |
+
info=i18n(
|
| 651 |
+
"Enables memory-efficient training. This reduces VRAM usage at the cost of slower training speed. It is useful for GPUs with limited memory (e.g., <6GB VRAM) or when training with a batch size larger than what your GPU can normally accommodate."
|
| 652 |
+
),
|
| 653 |
+
value=False,
|
| 654 |
+
interactive=True,
|
| 655 |
+
)
|
| 656 |
+
with gr.Row():
|
| 657 |
+
custom_pretrained = gr.Checkbox(
|
| 658 |
+
label=i18n("Custom Pretrained"),
|
| 659 |
+
info=i18n(
|
| 660 |
+
"Utilizing custom pretrained models can lead to superior results, as selecting the most suitable pretrained models tailored to the specific use case can significantly enhance performance."
|
| 661 |
+
),
|
| 662 |
+
value=False,
|
| 663 |
+
interactive=True,
|
| 664 |
+
)
|
| 665 |
+
overtraining_detector = gr.Checkbox(
|
| 666 |
+
label=i18n("Overtraining Detector"),
|
| 667 |
+
info=i18n(
|
| 668 |
+
"Detect overtraining to prevent the model from learning the training data too well and losing the ability to generalize to new data."
|
| 669 |
+
),
|
| 670 |
+
value=False,
|
| 671 |
+
interactive=True,
|
| 672 |
+
)
|
| 673 |
+
with gr.Row():
|
| 674 |
+
with gr.Column(visible=False) as pretrained_custom_settings:
|
| 675 |
+
with gr.Accordion(i18n("Pretrained Custom Settings")):
|
| 676 |
+
upload_pretrained = gr.File(
|
| 677 |
+
label=i18n("Upload Pretrained Model"),
|
| 678 |
+
type="filepath",
|
| 679 |
+
interactive=True,
|
| 680 |
+
)
|
| 681 |
+
refresh_custom_pretaineds_button = gr.Button(
|
| 682 |
+
i18n("Refresh Custom Pretraineds")
|
| 683 |
+
)
|
| 684 |
+
g_pretrained_path = gr.Dropdown(
|
| 685 |
+
label=i18n("Custom Pretrained G"),
|
| 686 |
+
info=i18n(
|
| 687 |
+
"Select the custom pretrained model for the generator."
|
| 688 |
+
),
|
| 689 |
+
choices=sorted(pretraineds_list_g),
|
| 690 |
+
interactive=True,
|
| 691 |
+
allow_custom_value=True,
|
| 692 |
+
)
|
| 693 |
+
d_pretrained_path = gr.Dropdown(
|
| 694 |
+
label=i18n("Custom Pretrained D"),
|
| 695 |
+
info=i18n(
|
| 696 |
+
"Select the custom pretrained model for the discriminator."
|
| 697 |
+
),
|
| 698 |
+
choices=sorted(pretraineds_list_d),
|
| 699 |
+
interactive=True,
|
| 700 |
+
allow_custom_value=True,
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
with gr.Column(visible=False) as overtraining_settings:
|
| 704 |
+
with gr.Accordion(i18n("Overtraining Detector Settings")):
|
| 705 |
+
overtraining_threshold = gr.Slider(
|
| 706 |
+
1,
|
| 707 |
+
100,
|
| 708 |
+
50,
|
| 709 |
+
step=1,
|
| 710 |
+
label=i18n("Overtraining Threshold"),
|
| 711 |
+
info=i18n(
|
| 712 |
+
"Set the maximum number of epochs you want your model to stop training if no improvement is detected."
|
| 713 |
+
),
|
| 714 |
+
interactive=True,
|
| 715 |
+
)
|
| 716 |
+
index_algorithm = gr.Radio(
|
| 717 |
+
label=i18n("Index Algorithm"),
|
| 718 |
+
info=i18n(
|
| 719 |
+
"KMeans is a clustering algorithm that divides the dataset into K clusters. This setting is particularly useful for large datasets."
|
| 720 |
+
),
|
| 721 |
+
choices=["Auto", "Faiss", "KMeans"],
|
| 722 |
+
value="Auto",
|
| 723 |
+
interactive=True,
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
def enforce_terms(terms_accepted, *args):
|
| 727 |
+
if not terms_accepted:
|
| 728 |
+
message = "You must agree to the Terms of Use to proceed."
|
| 729 |
+
gr.Info(message)
|
| 730 |
+
return message
|
| 731 |
+
return run_train_script(*args)
|
| 732 |
+
|
| 733 |
+
terms_checkbox = gr.Checkbox(
|
| 734 |
+
label=i18n("I agree to the terms of use"),
|
| 735 |
+
info=i18n(
|
| 736 |
+
"Please ensure compliance with the terms and conditions detailed in [this document](https://github.com/IAHispano/Applio/blob/main/TERMS_OF_USE.md) before proceeding with your training."
|
| 737 |
+
),
|
| 738 |
+
value=True,
|
| 739 |
+
interactive=True,
|
| 740 |
+
)
|
| 741 |
+
train_output_info = gr.Textbox(
|
| 742 |
+
label=i18n("Output Information"),
|
| 743 |
+
info=i18n("The output information will be displayed here."),
|
| 744 |
+
value="",
|
| 745 |
+
max_lines=8,
|
| 746 |
+
interactive=False,
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
with gr.Row():
|
| 750 |
+
train_button = gr.Button(i18n("Start Training"))
|
| 751 |
+
train_button.click(
|
| 752 |
+
fn=enforce_terms,
|
| 753 |
+
inputs=[
|
| 754 |
+
terms_checkbox,
|
| 755 |
+
model_name,
|
| 756 |
+
save_every_epoch,
|
| 757 |
+
save_only_latest,
|
| 758 |
+
save_every_weights,
|
| 759 |
+
total_epoch,
|
| 760 |
+
sampling_rate,
|
| 761 |
+
batch_size,
|
| 762 |
+
gpu,
|
| 763 |
+
overtraining_detector,
|
| 764 |
+
overtraining_threshold,
|
| 765 |
+
pretrained,
|
| 766 |
+
cleanup,
|
| 767 |
+
index_algorithm,
|
| 768 |
+
cache_dataset_in_gpu,
|
| 769 |
+
custom_pretrained,
|
| 770 |
+
g_pretrained_path,
|
| 771 |
+
d_pretrained_path,
|
| 772 |
+
vocoder,
|
| 773 |
+
checkpointing,
|
| 774 |
+
],
|
| 775 |
+
outputs=[train_output_info],
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
stop_train_button = gr.Button(i18n("Stop Training"), visible=False)
|
| 779 |
+
stop_train_button.click(
|
| 780 |
+
fn=stop_train,
|
| 781 |
+
inputs=[model_name],
|
| 782 |
+
outputs=[],
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
index_button = gr.Button(i18n("Generate Index"))
|
| 786 |
+
index_button.click(
|
| 787 |
+
fn=run_index_script,
|
| 788 |
+
inputs=[model_name, index_algorithm],
|
| 789 |
+
outputs=[train_output_info],
|
| 790 |
+
)
|
| 791 |
+
|
| 792 |
+
# Export Model section
|
| 793 |
+
with gr.Accordion(i18n("Export Model"), open=False):
|
| 794 |
+
if not os.name == "nt":
|
| 795 |
+
gr.Markdown(
|
| 796 |
+
i18n(
|
| 797 |
+
"The button 'Upload' is only for google colab: Uploads the exported files to the ApplioExported folder in your Google Drive."
|
| 798 |
+
)
|
| 799 |
+
)
|
| 800 |
+
with gr.Row():
|
| 801 |
+
with gr.Column():
|
| 802 |
+
pth_file_export = gr.File(
|
| 803 |
+
label=i18n("Exported Pth file"),
|
| 804 |
+
type="filepath",
|
| 805 |
+
value=None,
|
| 806 |
+
interactive=False,
|
| 807 |
+
)
|
| 808 |
+
pth_dropdown_export = gr.Dropdown(
|
| 809 |
+
label=i18n("Pth file"),
|
| 810 |
+
info=i18n("Select the pth file to be exported"),
|
| 811 |
+
choices=get_pth_list(),
|
| 812 |
+
value=None,
|
| 813 |
+
interactive=True,
|
| 814 |
+
allow_custom_value=True,
|
| 815 |
+
)
|
| 816 |
+
with gr.Column():
|
| 817 |
+
index_file_export = gr.File(
|
| 818 |
+
label=i18n("Exported Index File"),
|
| 819 |
+
type="filepath",
|
| 820 |
+
value=None,
|
| 821 |
+
interactive=False,
|
| 822 |
+
)
|
| 823 |
+
index_dropdown_export = gr.Dropdown(
|
| 824 |
+
label=i18n("Index File"),
|
| 825 |
+
info=i18n("Select the index file to be exported"),
|
| 826 |
+
choices=get_index_list(),
|
| 827 |
+
value=None,
|
| 828 |
+
interactive=True,
|
| 829 |
+
allow_custom_value=True,
|
| 830 |
+
)
|
| 831 |
+
with gr.Row():
|
| 832 |
+
with gr.Column():
|
| 833 |
+
refresh_export = gr.Button(i18n("Refresh"))
|
| 834 |
+
if not os.name == "nt":
|
| 835 |
+
upload_exported = gr.Button(i18n("Upload"))
|
| 836 |
+
upload_exported.click(
|
| 837 |
+
fn=upload_to_google_drive,
|
| 838 |
+
inputs=[pth_dropdown_export, index_dropdown_export],
|
| 839 |
+
outputs=[],
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
def toggle_visible(checkbox):
|
| 843 |
+
return {"visible": checkbox, "__type__": "update"}
|
| 844 |
+
|
| 845 |
+
def toggle_visible_hop_length(f0_method):
|
| 846 |
+
if f0_method == "crepe" or f0_method == "crepe-tiny":
|
| 847 |
+
return {"visible": True, "__type__": "update"}
|
| 848 |
+
return {"visible": False, "__type__": "update"}
|
| 849 |
+
|
| 850 |
+
def toggle_pretrained(pretrained, custom_pretrained):
|
| 851 |
+
if custom_pretrained == False:
|
| 852 |
+
return {"visible": pretrained, "__type__": "update"}, {
|
| 853 |
+
"visible": False,
|
| 854 |
+
"__type__": "update",
|
| 855 |
+
}
|
| 856 |
+
else:
|
| 857 |
+
return {"visible": pretrained, "__type__": "update"}, {
|
| 858 |
+
"visible": pretrained,
|
| 859 |
+
"__type__": "update",
|
| 860 |
+
}
|
| 861 |
+
|
| 862 |
+
def enable_stop_train_button():
|
| 863 |
+
return {"visible": False, "__type__": "update"}, {
|
| 864 |
+
"visible": True,
|
| 865 |
+
"__type__": "update",
|
| 866 |
+
}
|
| 867 |
+
|
| 868 |
+
def disable_stop_train_button():
|
| 869 |
+
return {"visible": True, "__type__": "update"}, {
|
| 870 |
+
"visible": False,
|
| 871 |
+
"__type__": "update",
|
| 872 |
+
}
|
| 873 |
+
|
| 874 |
+
def download_prerequisites():
|
| 875 |
+
gr.Info(
|
| 876 |
+
"Checking for prerequisites with pitch guidance... Missing files will be downloaded. If you already have them, this step will be skipped."
|
| 877 |
+
)
|
| 878 |
+
run_prerequisites_script(
|
| 879 |
+
pretraineds_hifigan=True,
|
| 880 |
+
models=False,
|
| 881 |
+
exe=False,
|
| 882 |
+
)
|
| 883 |
+
gr.Info(
|
| 884 |
+
"Prerequisites check complete. Missing files were downloaded, and you may now start preprocessing."
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
def toggle_visible_embedder_custom(embedder_model):
|
| 888 |
+
if embedder_model == "custom":
|
| 889 |
+
return {"visible": True, "__type__": "update"}
|
| 890 |
+
return {"visible": False, "__type__": "update"}
|
| 891 |
+
|
| 892 |
+
def toggle_architecture(architecture):
|
| 893 |
+
if architecture == "Applio":
|
| 894 |
+
return {
|
| 895 |
+
"choices": ["32000", "40000", "44100", "48000"],
|
| 896 |
+
"__type__": "update",
|
| 897 |
+
}, {
|
| 898 |
+
"interactive": True,
|
| 899 |
+
"__type__": "update",
|
| 900 |
+
}
|
| 901 |
+
else:
|
| 902 |
+
return {
|
| 903 |
+
"choices": ["32000", "40000", "48000"],
|
| 904 |
+
"__type__": "update",
|
| 905 |
+
"value": "40000",
|
| 906 |
+
}, {"interactive": False, "__type__": "update", "value": "HiFi-GAN"}
|
| 907 |
+
|
| 908 |
+
def update_slider_visibility(noise_reduction):
|
| 909 |
+
return gr.update(visible=noise_reduction)
|
| 910 |
+
|
| 911 |
+
noise_reduction.change(
|
| 912 |
+
fn=update_slider_visibility,
|
| 913 |
+
inputs=noise_reduction,
|
| 914 |
+
outputs=clean_strength,
|
| 915 |
+
)
|
| 916 |
+
architecture.change(
|
| 917 |
+
fn=toggle_architecture,
|
| 918 |
+
inputs=[architecture],
|
| 919 |
+
outputs=[sampling_rate, vocoder],
|
| 920 |
+
)
|
| 921 |
+
refresh.click(
|
| 922 |
+
fn=refresh_models_and_datasets,
|
| 923 |
+
inputs=[],
|
| 924 |
+
outputs=[model_name, dataset_path],
|
| 925 |
+
)
|
| 926 |
+
dataset_creator.change(
|
| 927 |
+
fn=toggle_visible,
|
| 928 |
+
inputs=[dataset_creator],
|
| 929 |
+
outputs=[dataset_creator_settings],
|
| 930 |
+
)
|
| 931 |
+
upload_audio_dataset.upload(
|
| 932 |
+
fn=save_drop_dataset_audio,
|
| 933 |
+
inputs=[upload_audio_dataset, dataset_name],
|
| 934 |
+
outputs=[upload_audio_dataset, dataset_path],
|
| 935 |
+
)
|
| 936 |
+
f0_method.change(
|
| 937 |
+
fn=toggle_visible_hop_length,
|
| 938 |
+
inputs=[f0_method],
|
| 939 |
+
outputs=[hop_length],
|
| 940 |
+
)
|
| 941 |
+
embedder_model.change(
|
| 942 |
+
fn=toggle_visible_embedder_custom,
|
| 943 |
+
inputs=[embedder_model],
|
| 944 |
+
outputs=[embedder_custom],
|
| 945 |
+
)
|
| 946 |
+
embedder_model.change(
|
| 947 |
+
fn=toggle_visible_embedder_custom,
|
| 948 |
+
inputs=[embedder_model],
|
| 949 |
+
outputs=[embedder_custom],
|
| 950 |
+
)
|
| 951 |
+
move_files_button.click(
|
| 952 |
+
fn=create_folder_and_move_files,
|
| 953 |
+
inputs=[folder_name_input, bin_file_upload, config_file_upload],
|
| 954 |
+
outputs=[],
|
| 955 |
+
)
|
| 956 |
+
refresh_embedders_button.click(
|
| 957 |
+
fn=refresh_embedders_folders, inputs=[], outputs=[embedder_model_custom]
|
| 958 |
+
)
|
| 959 |
+
pretrained.change(
|
| 960 |
+
fn=toggle_pretrained,
|
| 961 |
+
inputs=[pretrained, custom_pretrained],
|
| 962 |
+
outputs=[custom_pretrained, pretrained_custom_settings],
|
| 963 |
+
)
|
| 964 |
+
custom_pretrained.change(
|
| 965 |
+
fn=toggle_visible,
|
| 966 |
+
inputs=[custom_pretrained],
|
| 967 |
+
outputs=[pretrained_custom_settings],
|
| 968 |
+
)
|
| 969 |
+
refresh_custom_pretaineds_button.click(
|
| 970 |
+
fn=refresh_custom_pretraineds,
|
| 971 |
+
inputs=[],
|
| 972 |
+
outputs=[g_pretrained_path, d_pretrained_path],
|
| 973 |
+
)
|
| 974 |
+
upload_pretrained.upload(
|
| 975 |
+
fn=save_drop_model,
|
| 976 |
+
inputs=[upload_pretrained],
|
| 977 |
+
outputs=[upload_pretrained],
|
| 978 |
+
)
|
| 979 |
+
overtraining_detector.change(
|
| 980 |
+
fn=toggle_visible,
|
| 981 |
+
inputs=[overtraining_detector],
|
| 982 |
+
outputs=[overtraining_settings],
|
| 983 |
+
)
|
| 984 |
+
train_button.click(
|
| 985 |
+
fn=enable_stop_train_button,
|
| 986 |
+
inputs=[],
|
| 987 |
+
outputs=[train_button, stop_train_button],
|
| 988 |
+
)
|
| 989 |
+
train_output_info.change(
|
| 990 |
+
fn=disable_stop_train_button,
|
| 991 |
+
inputs=[],
|
| 992 |
+
outputs=[train_button, stop_train_button],
|
| 993 |
+
)
|
| 994 |
+
pth_dropdown_export.change(
|
| 995 |
+
fn=export_pth,
|
| 996 |
+
inputs=[pth_dropdown_export],
|
| 997 |
+
outputs=[pth_file_export],
|
| 998 |
+
)
|
| 999 |
+
index_dropdown_export.change(
|
| 1000 |
+
fn=export_index,
|
| 1001 |
+
inputs=[index_dropdown_export],
|
| 1002 |
+
outputs=[index_file_export],
|
| 1003 |
+
)
|
| 1004 |
+
refresh_export.click(
|
| 1005 |
+
fn=refresh_pth_and_index_list,
|
| 1006 |
+
inputs=[],
|
| 1007 |
+
outputs=[pth_dropdown_export, index_dropdown_export],
|
| 1008 |
+
)
|