Spaces:
Running
Running
import torch | |
def feature_loss(fmap_r, fmap_g): | |
""" | |
Compute the feature loss between reference and generated feature maps. | |
Args: | |
fmap_r (list of torch.Tensor): List of reference feature maps. | |
fmap_g (list of torch.Tensor): List of generated feature maps. | |
""" | |
return 2 * sum( | |
torch.mean(torch.abs(rl - gl)) | |
for dr, dg in zip(fmap_r, fmap_g) | |
for rl, gl in zip(dr, dg) | |
) | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
""" | |
Compute the discriminator loss for real and generated outputs. | |
Args: | |
disc_real_outputs (list of torch.Tensor): List of discriminator outputs for real samples. | |
disc_generated_outputs (list of torch.Tensor): List of discriminator outputs for generated samples. | |
""" | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1 - dr.float()) ** 2) | |
g_loss = torch.mean(dg.float() ** 2) | |
# r_losses.append(r_loss.item()) | |
# g_losses.append(g_loss.item()) | |
loss += r_loss + g_loss | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
""" | |
Compute the generator loss based on discriminator outputs. | |
Args: | |
disc_outputs (list of torch.Tensor): List of discriminator outputs for generated samples. | |
""" | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1 - dg.float()) ** 2) | |
# gen_losses.append(l.item()) | |
loss += l | |
return loss, gen_losses | |
def discriminator_loss_scaled(disc_real, disc_fake, scale=1.0): | |
loss = 0 | |
for i, (d_real, d_fake) in enumerate(zip(disc_real, disc_fake)): | |
real_loss = torch.mean((1 - d_real) ** 2) | |
fake_loss = torch.mean(d_fake**2) | |
_loss = real_loss + fake_loss | |
loss += _loss if i < len(disc_real) / 2 else scale * _loss | |
return loss, None, None | |
def generator_loss_scaled(disc_outputs, scale=1.0): | |
loss = 0 | |
for i, d_fake in enumerate(disc_outputs): | |
d_fake = d_fake.float() | |
_loss = torch.mean((1 - d_fake) ** 2) | |
loss += _loss if i < len(disc_outputs) / 2 else scale * _loss | |
return loss, None, None | |
def discriminator_loss_scaled(disc_real, disc_fake, scale=1.0): | |
""" | |
Compute the scaled discriminator loss for real and generated outputs. | |
Args: | |
disc_real (list of torch.Tensor): List of discriminator outputs for real samples. | |
disc_fake (list of torch.Tensor): List of discriminator outputs for generated samples. | |
scale (float, optional): Scaling factor applied to losses beyond the midpoint. Default is 1.0. | |
""" | |
midpoint = len(disc_real) // 2 | |
losses = [] | |
for i, (d_real, d_fake) in enumerate(zip(disc_real, disc_fake)): | |
real_loss = (1 - d_real).pow(2).mean() | |
fake_loss = d_fake.pow(2).mean() | |
total_loss = real_loss + fake_loss | |
if i >= midpoint: | |
total_loss *= scale | |
losses.append(total_loss) | |
loss = sum(losses) | |
return loss, None, None | |
def generator_loss_scaled(disc_outputs, scale=1.0): | |
""" | |
Compute the scaled generator loss based on discriminator outputs. | |
Args: | |
disc_outputs (list of torch.Tensor): List of discriminator outputs for generated samples. | |
scale (float, optional): Scaling factor applied to losses beyond the midpoint. Default is 1.0. | |
""" | |
midpoint = len(disc_outputs) // 2 | |
losses = [] | |
for i, d_fake in enumerate(disc_outputs): | |
loss_value = (1 - d_fake).pow(2).mean() | |
if i >= midpoint: | |
loss_value *= scale | |
losses.append(loss_value) | |
loss = sum(losses) | |
return loss, None, None | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
Compute the Kullback-Leibler divergence loss. | |
Args: | |
z_p (torch.Tensor): Latent variable z_p [b, h, t_t]. | |
logs_q (torch.Tensor): Log variance of q [b, h, t_t]. | |
m_p (torch.Tensor): Mean of p [b, h, t_t]. | |
logs_p (torch.Tensor): Log variance of p [b, h, t_t]. | |
z_mask (torch.Tensor): Mask for the latent variables [b, h, t_t]. | |
""" | |
kl = logs_p - logs_q - 0.5 + 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2 * logs_p) | |
kl = (kl * z_mask).sum() | |
loss = kl / z_mask.sum() | |
return loss | |