File size: 6,866 Bytes
b833f77
 
 
 
99d7b92
 
b833f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b29a3a
b833f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d9d31
b833f77
 
 
 
 
 
4b29a3a
b833f77
 
 
4b29a3a
b833f77
 
 
 
 
 
 
99d7b92
b833f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d7b92
422c973
b833f77
99d7b92
b833f77
 
 
 
99d7b92
 
b833f77
 
 
 
 
 
 
 
422c973
 
 
b833f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d7b92
 
b833f77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import time
import requests
import re
import pandas as pd
import plotly.express as px
import gradio as gr
from dotenv import load_dotenv
from scripts.review_summarizer import analyze_reviews

load_dotenv()
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')

if not os.path.exists("data"):
    os.makedirs("data")

def create_sentiment_plot(df):
    """Creates a pie chart visualization for sentiment distribution"""
    sentiment_counts = df["sentiment_label"].value_counts()
    fig = px.pie(
        values=sentiment_counts.values,
        names=sentiment_counts.index,
        title="Duygu Analizi Dağılımı",
        color_discrete_map={
            "Pozitif": "#2ecc71",
            "Nötr": "#95a5a6",
            "Negatif": "#e74c3c",
        },
    )
    return fig

def create_star_plot(df):
    """Creates a bar chart visualization for star rating distribution"""
    star_counts = df["Yıldız Sayısı"].value_counts().sort_index()
    fig = px.bar(
        x=star_counts.index,
        y=star_counts.values,
        title="Yıldız Dağılımı",
        labels={"x": "Yıldız Sayısı", "y": "Yorum Sayısı"},
        color_discrete_sequence=["#f39c12"],
    )
    fig.update_layout(
        xaxis=dict(
            tickmode="array",
            ticktext=["⭐", "⭐⭐", "⭐⭐⭐", "⭐⭐⭐⭐", "⭐⭐⭐⭐⭐"],
        )
    )
    return fig

def scrape_product_comments_v2(url):
    headers = {
        "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
        "accept-language": "en-US,en;q=0.9",
        "cache-control": "max-age=0",
        "upgrade-insecure-requests": "1",
        "user-agent": "Mozilla/5.0 (iPad; CPU OS 14_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) FxiOS/129.0 Mobile/15E148 Safari/605.1.15"
    }

    # Extract product_id using regex
    match = re.search(r"-p-(\d+)", url)
    if not match:
        raise ValueError("Product ID not found in URL")
    
    product_id = match.group(1)
    api_url = f"https://apigw.trendyol.com/discovery-web-websfxsocialreviewrating-santral/product-reviews-detailed?contentId={product_id}&page=1&order=DESC&orderBy=Score&channelId=1"

    def fetch_reviews(api_url, headers):
        all_reviews = []
        response = requests.get(api_url, headers=headers)
        if response.status_code != 200:
            raise ConnectionError(f"Initial request failed: {response.status_code}")
        
        data = response.json()
        total_pages = data["result"]["productReviews"]["totalPages"]
        all_reviews.extend(data["result"]["productReviews"]["content"])

        for page in range(2, total_pages + 1):
            paginated_url = api_url.replace("page=1", f"page={page}")
            response = requests.get(paginated_url, headers=headers)
            if response.status_code == 200:
                page_data = response.json()
                all_reviews.extend(page_data["result"]["productReviews"]["content"])
            else:
                print(f"Failed to fetch page {page}: {response.status_code}")

        return all_reviews

    reviews = fetch_reviews(api_url, headers)
    reviews_df = pd.DataFrame(reviews)
    reviews_df = reviews_df.rename(columns={
        "id": "Kullanıcı_id",
        "userFullName": "Kullanıcı Adı",
        "comment": "Yorum",
        "lastModifiedDate": "Tarih",
        "rate": "Yıldız Sayısı"
    })
    reviews_df = reviews_df[["Kullanıcı_id", "Kullanıcı Adı", "Yorum", "Tarih", "Yıldız Sayısı"]]
    return reviews_df

def analyze_product(url, progress=gr.Progress()):
    try:
        # Fetch reviews
        progress(0.1, desc="Yorumlar çekiliyor...")
        df = scrape_product_comments_v2(url)
        
        if df is None or len(df) == 0:
            return None, None, None, None, None, None, None, "Yorumlar çekilemedi. URL'yi kontrol edin."

        # Save to CSV
        data_path = os.path.join("data", "product_comments.csv")
        df.to_csv(data_path, index=False, encoding="utf-8-sig")

        # Analyze reviews
        progress(0.4, desc="Yorumlar analiz ediliyor...")
        summary, analyzed_df = analyze_reviews(data_path, GEMINI_API_KEY)

        progress(0.7, desc="Sonuçlar hazırlanıyor...")
        
        # Calculate metrics
        total_reviews = len(df)
        total_analyzed = len(analyzed_df)
        avg_rating = f"{analyzed_df['Yıldız Sayısı'].mean():.1f}⭐"
        positive_ratio = len(analyzed_df[analyzed_df["sentiment_label"] == "Pozitif"]) / len(analyzed_df) * 100
        positive_ratio_str = f"%{positive_ratio:.1f}"
        
        # Create plots
        sentiment_plot = create_sentiment_plot(analyzed_df)
        star_plot = create_star_plot(analyzed_df)
        
        # Create info message for removed reviews
        removed_reviews = total_reviews - total_analyzed
        info_message = ""
        if removed_reviews > 0:
            info_message = f"Not: Toplam {removed_reviews} adet kargo, teslimat ve satıcı ile ilgili yorum analiz dışı bırakılmıştır."

        progress(1.0, desc="Analiz tamamlandı!")
        
        return (
            str(total_reviews),
            str(total_analyzed),
            avg_rating,
            positive_ratio_str,
            sentiment_plot,
            star_plot,
            summary,
            info_message
        )
        
    except Exception as e:
        return None, None, None, None, None, None, None, f"Bir hata oluştu: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="Trendyol Yorum Analizi") as demo:
    gr.Markdown("""
    # Trendyol Yorum Analizi
    
    Bu uygulama, Trendyol ürün sayfasındaki yorumları çeker, analiz eder ve özetler.
    """)
    
    with gr.Row():
        url_input = gr.Textbox(
            label="Trendyol Ürün Yorumları URL",
            placeholder="ürünün linki"
        )
    
    analyze_btn = gr.Button("Analiz Et")
    
    with gr.Row():
        total_reviews = gr.Textbox(label="Toplam Yorum")
        total_analyzed = gr.Textbox(label="Ürün Değerlendirme Sayısı")
        avg_rating = gr.Textbox(label="Ortalama Puan")
        positive_ratio = gr.Textbox(label="Olumlu Yorum Oranı")
    

    
    summary = gr.Markdown(label="📝 Genel Değerlendirme")
    info_message = gr.Markdown()
    
    with gr.Row():
        sentiment_plot = gr.Plot()
        star_plot = gr.Plot()
    
    error_message = gr.Markdown()
    
    analyze_btn.click(
        analyze_product,
        inputs=[url_input],
        outputs=[
            total_reviews,
            total_analyzed,
            avg_rating,
            positive_ratio,
            sentiment_plot,
            star_plot,
            summary,
            error_message
        ]
    )

if __name__ == "__main__":
    demo.launch()