File size: 2,128 Bytes
7ae2fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb5b87
7ae2fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
import streamlit as st
import plotly.express as px
from models import NLI_MODEL_OPTIONS, NSP_MODEL_OPTIONS, METHOD_OPTIONS

st.title("Zero-shot Turkish Text Classification")

method_selection = st.radio(
    "Select a zero-shot classification method.",
    [
        METHOD_OPTIONS["nli"],
        METHOD_OPTIONS["nsp"],
    ],
)

if method_selection == METHOD_OPTIONS["nli"]:
    model = st.selectbox(
        "Select a natural language inference model.", NLI_MODEL_OPTIONS
    )
if method_selection == METHOD_OPTIONS["nsp"]:
    model = st.selectbox(
        "Select a BERT model for next sentence prediction.", NSP_MODEL_OPTIONS
    )

st.header("Configure prompts and labels")
col1, col2 = st.columns(2)
col1.subheader("Candidate labels")
labels = col1.text_area(
    label="These are the labels that the model will try to predict for the given text input. Your input labels should be comma separated and meaningful.",
    value="spor,dünya,siyaset,ekonomi,kültür ve sanat",
    height=10,
)
col2.subheader("Prompt template")
prompt_template = col2.text_area(
    label="Prompt template is used to transform NLI and NSP tasks into a general-use zero-shot classifier. Models replace {} with the labels that you have given.",
    value="Bu metin {} kategorisine aittir",
    height=10,
)

col1.header("Make predictions")
col2.header("")
col1.text_area("", value="Enter some text to classify.")
col1.button("Predict")

probs = [0.86, 0.10, 0.01, 0.02, 0.01]
data = pd.DataFrame({"labels": labels.split(","), "probability": probs}).sort_values(
    by="probability", ascending=False
)
chart = px.bar(
    data,
    x="probability",
    y="labels",
    color="labels",
    orientation="h",
    height=290,
    width=500,
).update_layout(
    {
        "xaxis": {"title": "probability", "visible": True, "showticklabels": True},
        "yaxis": {"title": None, "visible": True, "showticklabels": True},
        "margin": dict(
            l=10,  # left
            r=10,  # right
            t=50,  # top
            b=10,  # bottom
        ),
        "showlegend": False,
    }
)
col2.plotly_chart(chart)