import subprocess import sys def install_parler_tts(): subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/huggingface/parler-tts.git"]) # Call the function to install parler-tts install_parler_tts() import gradio as gr import requests import os import time import re import logging import tempfile import folium import concurrent.futures import torch from PIL import Image from datetime import datetime from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor from googlemaps import Client as GoogleMapsClient from gtts import gTTS from diffusers import StableDiffusion3Pipeline import soundfile as sf from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_pinecone import PineconeVectorStore from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.agents import Tool, initialize_agent from huggingface_hub import login # Check if the token is already set in the environment variables hf_token = os.getenv("HF_TOKEN") if hf_token is None: # If the token is not set, prompt for it (this should be done securely) print("Please set your Hugging Face token in the environment variables.") else: # Login using the token login(token=hf_token) # Your application logic goes here print("Logged in successfully to Hugging Face Hub!") # Set up logging logging.basicConfig(level=logging.DEBUG) # Initialize OpenAI embeddings embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) # Initialize Pinecone from pinecone import Pinecone pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) index_name = "birmingham-dataset" vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings) retriever = vectorstore.as_retriever(search_kwargs={'k': 5}) # Initialize ChatOpenAI model chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=10, return_messages=True ) def get_current_time_and_date(): now = datetime.now() return now.strftime("%Y-%m-%d %H:%M:%S") # Example usage current_time_and_date = get_current_time_and_date() def fetch_local_events(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}' response = requests.get(url) if response.status_code == 200: events_results = response.json().get("events_results", []) events_html = """

Local Events

""" for index, event in enumerate(events_results): title = event.get("title", "No title") date = event.get("date", "No date") location = event.get("address", "No location") link = event.get("link", "#") events_html += f"""
{index + 1}. {title}

Date: {date}
Location: {location}

""" return events_html else: return "

Failed to fetch local events

" def fetch_local_weather(): try: api_key = os.environ['WEATHER_API'] url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}' response = requests.get(url) response.raise_for_status() jsonData = response.json() current_conditions = jsonData.get("currentConditions", {}) temp_celsius = current_conditions.get("temp", "N/A") if temp_celsius != "N/A": temp_fahrenheit = int((temp_celsius * 9/5) + 32) else: temp_fahrenheit = "N/A" condition = current_conditions.get("conditions", "N/A") humidity = current_conditions.get("humidity", "N/A") weather_html = f"""

Local Weather

{condition}

Temperature: {temp_fahrenheit}°F

Condition: {condition}

Humidity: {humidity}%

""" return weather_html except requests.exceptions.RequestException as e: return f"

Failed to fetch local weather: {e}

" def get_weather_icon(condition): condition_map = { "Clear": "c01d", "Partly Cloudy": "c02d", "Cloudy": "c03d", "Overcast": "c04d", "Mist": "a01d", "Patchy rain possible": "r01d", "Light rain": "r02d", "Moderate rain": "r03d", "Heavy rain": "r04d", "Snow": "s01d", "Thunderstorm": "t01d", "Fog": "a05d", } return condition_map.get(condition, "c04d") # Update prompt templates to include fetched details current_time_and_date = get_current_time_and_date() # Define prompt templates template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context, memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and event type and description. Always say "It was my pleasure!" at the end of the answer. {context} Question: {question} Helpful Answer:""" template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context, memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer. {context} Question: {question} Helpful Answer:""" QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1) QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2) # Define the retrieval QA chain def build_qa_chain(prompt_template): qa_chain = RetrievalQA.from_chain_type( llm=chat_model, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt_template} ) tools = [ Tool( name='Knowledge Base', func=qa_chain, description='Use this tool when answering general knowledge queries to get more information about the topic' ) ] return qa_chain, tools # Define the agent initializer def initialize_agent_with_prompt(prompt_template): qa_chain, tools = build_qa_chain(prompt_template) agent = initialize_agent( agent='chat-conversational-react-description', tools=tools, llm=chat_model, verbose=False, max_iteration=5, early_stopping_method='generate', memory=conversational_memory ) return agent # Define the function to generate answers def generate_answer(message, choice): logging.debug(f"generate_answer called with prompt_choice: {choice}") if choice == "Details": agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1) elif choice == "Conversational": agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2) else: logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'") agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2) response = agent(message) # Extract addresses for mapping regardless of the choice addresses = extract_addresses(response['output']) return response['output'], addresses def bot(history, choice, tts_model): if not history: return history response, addresses = generate_answer(history[-1][0], choice) history[-1][1] = "" # Generate audio for the entire response in a separate thread with concurrent.futures.ThreadPoolExecutor() as executor: if tts_model == "ElevenLabs": audio_future = executor.submit(generate_audio_elevenlabs, response) else: audio_future = executor.submit(generate_audio_parler_tts, response) for character in response: history[-1][1] += character time.sleep(0.05) # Adjust the speed of text appearance yield history, None audio_path = audio_future.result() yield history, audio_path def add_message(history, message): history.append((message, None)) return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False) def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def extract_addresses(response): if not isinstance(response, str): response = str(response) address_patterns = [ r'([A-Z].*,\sBirmingham,\sAL\s\d{5})', r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})', r'([A-Z].*,\sAL\s\d{5})', r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})', r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})', r'(\d{2}.*\sStreets)', r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})' r'([a-zA-Z]\s Birmingham)' ] addresses = [] for pattern in address_patterns: addresses.extend(re.findall(pattern, response)) return addresses all_addresses = [] def generate_map(location_names): global all_addresses all_addresses.extend(location_names) api_key = os.environ['GOOGLEMAPS_API_KEY'] gmaps = GoogleMapsClient(key=api_key) m = folium.Map(location=[33.5175,-86.809444], zoom_start=16) for location_name in all_addresses: geocode_result = gmaps.geocode(location_name) if geocode_result: location = geocode_result[0]['geometry']['location'] folium.Marker( [location['lat'], location['lng']], tooltip=f"{geocode_result[0]['formatted_address']}" ).add_to(m) map_html = m._repr_html_() return map_html def fetch_local_news(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}' response = requests.get(url) if response.status_code == 200: results = response.json().get("news_results", []) news_html = """

Birmingham Today

""" for index, result in enumerate(results[:7]): title = result.get("title", "No title") link = result.get("link", "#") snippet = result.get("snippet", "") news_html += f"""
{index + 1}. {title}

{snippet}

""" return news_html else: return "

Failed to fetch local news

" # Voice Control import numpy as np import torch from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer model_id = 'openai/whisper-large-v3' device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, #low_cpu_mem_usage=True, use_safetensors=True).to(device) processor = AutoProcessor.from_pretrained(model_id) # Optimized ASR pipeline pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) base_audio_drive = "/data/audio" import numpy as np def transcribe_function(stream, new_chunk): try: sr, y = new_chunk[0], new_chunk[1] except TypeError: print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") return stream, "", None y = y.astype(np.float32) / np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) full_text = result.get("text", "") return stream, full_text, result def update_map_with_response(history): if not history: return "" response = history[-1][1] addresses = extract_addresses(response) return generate_map(addresses) def clear_textbox(): return "" def show_map_if_details(history,choice): if choice in ["Details", "Conversational"]: return gr.update(visible=True), update_map_with_response(history) else: return gr.update(visible=False), "" def generate_audio_elevenlabs(text): XI_API_KEY = os.environ['ELEVENLABS_API'] VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' # Replace with your voice ID tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" headers = { "Accept": "application/json", "xi-api-key": XI_API_KEY } data = { "text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": { "stability": 1.0, "similarity_boost": 0.0, "style": 0.60, # Adjust style for more romantic tone "use_speaker_boost": False } } response = requests.post(tts_url, headers=headers, json=data, stream=True) if response.ok: with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: for chunk in response.iter_content(chunk_size=1024): f.write(chunk) temp_audio_path = f.name logging.debug(f"Audio saved to {temp_audio_path}") return temp_audio_path else: logging.error(f"Error generating audio: {response.text}") return None def generate_audio_parler_tts(text): model_id = 'parler-tts/parler_tts_mini_v0.1' device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained(model_id).to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: sf.write(f.name, audio_arr, model.config.sampling_rate) temp_audio_path = f.name logging.debug(f"Audio saved to {temp_audio_path}") return temp_audio_path # Stable Diffusion setup pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16) pipe = pipe.to("cuda") def generate_image(prompt): image = pipe( prompt, negative_prompt="", num_inference_steps=28, guidance_scale=3.0, ).images[0] return image # Hardcoded prompt for image generation hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product" hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work." hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background." def update_images(): image_1 = generate_image(hardcoded_prompt_1) image_2 = generate_image(hardcoded_prompt_2) image_3 = generate_image(hardcoded_prompt_3) return image_1, image_2, image_3 with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo: with gr.Row(): with gr.Column(): state = gr.State() chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False) choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational") tts_choice = gr.Radio(label="Select TTS Model", choices=["ElevenLabs", "Parler TTS"], value="Parler TTS") gr.Markdown("

Talk to RADAR

", elem_id="voice-markdown") chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!") chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)]) bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input]) chatbot.like(print_like_dislike, None, None) clear_button = gr.Button("Clear") clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input) audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy') audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time") gr.Markdown("

Map

", elem_id="location-markdown") location_output = gr.HTML() bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output]) with gr.Column(): weather_output = gr.HTML(value=fetch_local_weather()) news_output = gr.HTML(value=fetch_local_news()) news_output = gr.HTML(value=fetch_local_events()) with gr.Column(): image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400) image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400) image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400) refresh_button = gr.Button("Refresh Images") refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3]) demo.queue() demo.launch(share=True)