import logging # Set up logging logging.basicConfig(level=logging.DEBUG) from langchain_openai import OpenAIEmbeddings import os import re import folium import gradio as gr import time import requests from googlemaps import Client as GoogleMapsClient from gtts import gTTS import tempfile import string embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) from pinecone import Pinecone, ServerlessSpec pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) index_name = "omaha-details" from langchain_pinecone import PineconeVectorStore vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings) retriever = vectorstore.as_retriever(search_kwargs={'k': 5}) from langchain_openai import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.agents import Tool, initialize_agent # Build prompt template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Use the following pieces of context, memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and event type and description. Always say "It was my pleasure!" at the end of the answer. {context} Question: {question} Helpful Answer:""" template2 = """You are an expert guide of Omaha, Nebraska's perennial events. With the context, memory, and message history provided, answer the question in as crisp as possible. Always include the time, date, and event type and description only apart from that don't give any other details. Always say "It was my pleasure!" at the end of the answer. If you don't know the answer, simply say, "Homie, I need to get more data for this," without making up an answer. {context} Question: {question} Helpful Answer:""" QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1) QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2) chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=10, return_messages=True ) # Define the retrieval QA chain def build_qa_chain(prompt_template): qa_chain = RetrievalQA.from_chain_type( llm=chat_model, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt_template} ) tools = [ Tool( name='Knowledge Base', func=qa_chain, description='use this tool when answering general knowledge queries to get more information about the topic' ) ] return qa_chain, tools # Define the agent initializer def initialize_agent_with_prompt(prompt_template): qa_chain, tools = build_qa_chain(prompt_template) agent = initialize_agent( agent='chat-conversational-react-description', tools=tools, llm=chat_model, verbose=False, max_iteration=5, early_stopping_method='generate', memory=conversational_memory ) return agent # Define the function to generate answers def generate_answer(message, choice): logging.debug(f"generate_answer called with prompt_choice: {choice}") if choice == "Details": agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1) elif choice == "Conversational": agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2) else: logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Details'") agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1) response = agent(message) return response['output'] def bot(history, choice): if not history: return history response = generate_answer(history[-1][0], choice) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history def add_message(history, message): history.append((message, None)) return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False) def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) # Function to extract addresses from the chatbot's response def extract_addresses(response): address_pattern_1 = r'([A-Z].*,\sOmaha,\sNE\s\d{5})' address_pattern_2 = r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})' address_pattern_3 = r'([A-Z].*,\sNE\s\d{5})' address_pattern_4 = r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})' address_pattern_5 = r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})' address_pattern_6 = r'(\d{2}.*\sStreets)' address_pattern_7 = r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})' addresses = re.findall(address_pattern_1, response) + re.findall(address_pattern_2, response) + \ re.findall(address_pattern_3, response) + re.findall(address_pattern_4, response) + \ re.findall(address_pattern_5, response) + re.findall(address_pattern_6, response) + \ re.findall(address_pattern_7, response) return addresses # Store all found addresses all_addresses = [] # Map generation function using Google Maps Geocoding API def generate_map(location_names): global all_addresses all_addresses.extend(location_names) api_key = os.environ['GOOGLEMAPS_API_KEY'] gmaps = GoogleMapsClient(key=api_key) m = folium.Map(location=[41.2565, -95.9345], zoom_start=12) for location_name in all_addresses: geocode_result = gmaps.geocode(location_name) if geocode_result: location = geocode_result[0]['geometry']['location'] folium.Marker( [location['lat'], location['lng']], tooltip=f"{geocode_result[0]['formatted_address']}" ).add_to(m) map_html = m._repr_html_() return map_html # Function to fetch local news def fetch_local_news(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}' response = requests.get(url) if response.status_code == 200: results = response.json().get("news_results", []) news_html = "
{index + 1}. {title}
{snippet}
Failed to fetch local news
" # Function to fetch local events def fetch_local_events(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}' response = requests.get(url) if response.status_code == 200: events_results = response.json().get("events_results", []) events_text = "{index + 1}. {title}
Date: {date}
Location: {location}
Link :
"
return events_text
else:
return "Failed to fetch local events"
# Function to fetch local weather
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp = current_conditions.get("temp", "N/A")
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"
Temperature: {temp}°C
" weather_html += f"Condition: {condition}
" weather_html += f"Humidity: {humidity}%
" return weather_html except requests.exceptions.RequestException as e: return f"Failed to fetch local weather: {e}
" # Voice Control import numpy as np import torch from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor model_id = 'openai/whisper-large-v3' device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, #low_cpu_mem_usage=True, use_safetensors=True).to(device) processor = AutoProcessor.from_pretrained(model_id) # Optimized ASR pipeline pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) base_audio_drive = "/data/audio" import numpy as np def transcribe_function(stream, new_chunk): try: sr, y = new_chunk[0], new_chunk[1] except TypeError: print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") return stream, "", None y = y.astype(np.float32) / np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) full_text = result.get("text", "") return stream, full_text, result # Map Retrieval Function for location finder def update_map_with_response(history): if not history: return "" response = history[-1][1] addresses = extract_addresses(response) return generate_map(addresses) def clear_textbox(): return "" # Gradio Blocks interface with gr.Blocks(theme='rawrsor1/Everforest') as demo: with gr.Row(): with gr.Column(): chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False) with gr.Column(): weather_output = gr.HTML(value=fetch_local_weather()) with gr.Column(): news_output = gr.HTML(value=fetch_local_news()) def setup_ui(): state = gr.State() with gr.Row(): with gr.Column(): gr.Markdown("Choose the prompt") choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details") with gr.Column(): # Larger scale for the right column gr.Markdown("Enter the query / Voice Output") chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription") chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response") bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input]) chatbot.like(print_like_dislike, None, None) clear_button = gr.Button("Clear") clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input) with gr.Column(): # Smaller scale for the left column gr.Markdown("Stream your Voice") audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy') audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time") with gr.Row(): with gr.Column(): gr.Markdown("Locate the Events") location_output = gr.HTML() bot_msg.then(update_map_with_response, chatbot, location_output) setup_ui() demo.queue() demo.launch(share=True)