import gradio as gr import requests import os import time import re import logging import tempfile import folium import concurrent.futures import torch from PIL import Image from datetime import datetime from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor from googlemaps import Client as GoogleMapsClient from gtts import gTTS from diffusers import StableDiffusionPipeline from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_pinecone import PineconeVectorStore from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.chains.conversation.memory import ConversationBufferWindowMemory from huggingface_hub import login from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed from scipy.io.wavfile import write as write_wav from pydub import AudioSegment from string import punctuation import librosa from pathlib import Path import torchaudio import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Neo4j imports from langchain.chains import GraphCypherQAChain from langchain_community.graphs import Neo4jGraph from langchain_community.document_loaders import HuggingFaceDatasetLoader from langchain_text_splitters import CharacterTextSplitter from langchain_experimental.graph_transformers import LLMGraphTransformer from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.messages import AIMessage, HumanMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough from serpapi.google_search import GoogleSearch #Parler TTS v1 Modules import os import re import tempfile import soundfile as sf from string import punctuation from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor #API AutoDate Fix Up def get_current_date1(): return datetime.now().strftime("%Y-%m-%d") # Usage current_date1 = get_current_date1() # Set environment variables for CUDA os.environ['PYTORCH_USE_CUDA_DSA'] = '1' os.environ['CUDA_LAUNCH_BLOCKING'] = '1' os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' hf_token = os.getenv("HF_TOKEN") if hf_token is None: print("Please set your Hugging Face token in the environment variables.") else: login(token=hf_token) logging.basicConfig(level=logging.DEBUG) embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) #Initialization # Initialize the models def initialize_phi_model(): model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-mini-instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") return pipeline("text-generation", model=model, tokenizer=tokenizer) def initialize_gpt_model(): return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') def initialize_gpt4o_mini_model(): return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini') # Initialize all models phi_pipe = initialize_phi_model() gpt_model = initialize_gpt_model() gpt4o_mini_model = initialize_gpt4o_mini_model() # Existing embeddings and vector store for GPT-4o gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings) gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5}) # New vector store setup for Phi-3.5 phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings) phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5}) # Pinecone setup from pinecone import Pinecone pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) index_name = "radarfinaldata08192024" vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings) retriever = vectorstore.as_retriever(search_kwargs={'k': 5}) chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') chat_model1 = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini') conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=10, return_messages=True ) # Prompt templates def get_current_date(): return datetime.now().strftime("%B %d, %Y") current_date = get_current_date() template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places,sports and activities in Birmingham that can enhance your experience. If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible. Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama: Address: >>, Birmingham, AL Time: >>__ Date: >>__ Description: >>__ Address: >>, Birmingham, AL Time: >>__ Date: >>__ Description: >>__ Address: >>, Birmingham, AL Time: >>__ Date: >>__ Description: >>__ Address: >>, Birmingham, AL Time: >>__ Date: >>__ Description: >>__ Address: >>, Birmingham, AL Time: >>__ Date: >>__ Description: >>__ If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL. It was my pleasure! {{context}} Question: {{question}} Helpful Answer:""" # template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context. # In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response. # "It was my pleasure!" # {{context}} # Question: {{question}} # Helpful Answer:""" template2 =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama . I'm here to help you discover the best experiences this beautiful city has to offer. It's a bright and sunny day today, {current_date}, and I’m excited to assist you with any insights or recommendations you need. Whether you're looking for local events, sports ,clubs,concerts etc or just a great place to grab a bite, I've got you covered.Keep your response casual, short and sweet for the quickest response.Don't reveal the location and give the response in a descriptive way, I'm here to help make your time in Birmingham unforgettable! "It’s always a pleasure to assist you!" {{context}} Question: {{question}} Helpful Answer:""" QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1) QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2) # Neo4j setup graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io", username="neo4j", password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4" ) # Avoid pushing the graph documents to Neo4j every time # Only push the documents once and comment the code below after the initial push # dataset_name = "Pijush2023/birmindata07312024" # page_content_column = 'events_description' # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column) # data = loader.load() # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50) # documents = text_splitter.split_documents(data) # llm_transformer = LLMGraphTransformer(llm=chat_model) # graph_documents = llm_transformer.convert_to_graph_documents(documents) # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True) class Entities(BaseModel): names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text") entity_prompt = ChatPromptTemplate.from_messages([ ("system", "You are extracting organization and person entities from the text."), ("human", "Use the given format to extract information from the following input: {question}"), ]) entity_chain = entity_prompt | chat_model.with_structured_output(Entities) def remove_lucene_chars(input: str) -> str: return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!", "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]", "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"', ";": r"\;", " ": r"\ "})) def generate_full_text_query(input: str) -> str: full_text_query = "" words = [el for el in remove_lucene_chars(input).split() if el] for word in words[:-1]: full_text_query += f" {word}~2 AND" full_text_query += f" {words[-1]}~2" return full_text_query.strip() def structured_retriever(question: str) -> str: result = "" entities = entity_chain.invoke({"question": question}) for entity in entities.names: response = graph.query( """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2}) YIELD node,score CALL { WITH node MATCH (node)-[r:!MENTIONS]->(neighbor) RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output UNION ALL WITH node MATCH (node)<-[r:!MENTIONS]-(neighbor) RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output } RETURN output LIMIT 50 """, {"query": generate_full_text_query(entity)}, ) result += "\n".join([el['output'] for el in response]) return result def retriever_neo4j(question: str): structured_data = structured_retriever(question) logging.debug(f"Structured data: {structured_data}") return structured_data _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) def _format_chat_history(chat_history: list[tuple[str, str]]) -> list: buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer _search_query = RunnableBranch( ( RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( run_name="HasChatHistoryCheck" ), RunnablePassthrough.assign( chat_history=lambda x: _format_chat_history(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY']) | StrOutputParser(), ), RunnableLambda(lambda x : x["question"]), ) # template = """Answer the question based only on the following context: # {context} # Question: {question} # Use natural language and be concise. # Answer:""" template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context. In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response. "It was my pleasure!" {{context}} Question: {{question}} Helpful Answer:""" qa_prompt = ChatPromptTemplate.from_template(template) chain_neo4j = ( RunnableParallel( { "context": _search_query | retriever_neo4j, "question": RunnablePassthrough(), } ) | qa_prompt | chat_model | StrOutputParser() ) phi_custom_template = """ <|system|> You are a helpful assistant who provides clear, organized, crisp and conversational responses about an events,concerts,sports and all other activities of Birmingham,Alabama .<|end|> <|user|> {context} Question: {question}<|end|> <|assistant|> Sure! Here's the information you requested: """ def generate_bot_response(history, choice, retrieval_mode, model_choice): if not history: return # Select the model # selected_model = chat_model if model_choice == "LM-1" else phi_pipe selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe) response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model) history[-1][1] = "" for character in response: history[-1][1] += character yield history # Stream each character as it is generated time.sleep(0.05) # Add a slight delay to simulate streaming yield history # Final yield with the complete response def generate_tts_response(response, tts_choice): with concurrent.futures.ThreadPoolExecutor() as executor: if tts_choice == "Alpha": audio_future = executor.submit(generate_audio_elevenlabs, response) elif tts_choice == "Beta": audio_future = executor.submit(generate_audio_parler_tts, response) # elif tts_choice == "Gamma": # audio_future = executor.submit(generate_audio_mars5, response) audio_path = audio_future.result() return audio_path import concurrent.futures # Existing bot function with concurrent futures for parallel processing def bot(history, choice, tts_choice, retrieval_mode, model_choice): # Initialize an empty response response = "" # Create a thread pool to handle both text generation and TTS conversion in parallel with concurrent.futures.ThreadPoolExecutor() as executor: # Start the bot response generation in parallel bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice) # Wait for the text generation to start for history_chunk in bot_future.result(): response = history_chunk[-1][1] # Update the response with the current state yield history_chunk, None # Stream the text output as it's generated # Once text is fully generated, start the TTS conversion tts_future = executor.submit(generate_tts_response, response, tts_choice) # Get the audio output after TTS is done audio_path = tts_future.result() # Stream the final text and audio output yield history, audio_path # Modified bot function to separate chatbot response and TTS generation def generate_bot_response(history, choice, retrieval_mode, model_choice): if not history: return # Select the model # selected_model = chat_model if model_choice == "LM-1" else phi_pipe selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe) response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model) history[-1][1] = "" for character in response: history[-1][1] += character yield history # Stream each character as it is generated time.sleep(0.05) # Add a slight delay to simulate streaming yield history # Final yield with the complete response def generate_audio_after_text(response, tts_choice): # Generate TTS audio after text response is completed with concurrent.futures.ThreadPoolExecutor() as executor: tts_future = executor.submit(generate_tts_response, response, tts_choice) audio_path = tts_future.result() return audio_path import re def clean_response(response_text): # Remove system and user tags response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL) response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL) response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL) # Clean up the text by removing extra whitespace cleaned_response = response_text.strip() cleaned_response = re.sub(r'\s+', ' ', cleaned_response) # Ensure the response is conversational and organized cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.') return cleaned_response # Define a new template specifically for GPT-4o-mini in VDB Details mode gpt4o_mini_template_details = f""" As a highly specialized assistant, I provide precise, detailed, and informative responses. On this bright day of {current_date}, I'm equipped to assist with all your queries about Birmingham, Alabama, offering detailed insights tailored to your needs. Given your request, here is the detailed information you're seeking: {{context}} Question: {{question}} Detailed Answer: """ import traceback def generate_answer(message, choice, retrieval_mode, selected_model): logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}") # Logic for disabling options for Phi-3.5 if selected_model == "LM-2": choice = None retrieval_mode = None # try: # # Select the appropriate template based on the choice # if choice == "Details": # prompt_template = QA_CHAIN_PROMPT_1 # elif choice == "Conversational": # prompt_template = QA_CHAIN_PROMPT_2 # else: # prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1 try: # Select the appropriate template based on the choice and model if choice == "Details" and selected_model == chat_model1: # GPT-4o-mini prompt_template = PromptTemplate(input_variables=["context", "question"], template=gpt4o_mini_template_details) elif choice == "Details": prompt_template = QA_CHAIN_PROMPT_1 elif choice == "Conversational": prompt_template = QA_CHAIN_PROMPT_2 else: prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1 # Handle hotel-related queries if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower(): logging.debug("Handling hotel-related query") response = fetch_google_hotels() logging.debug(f"Hotel response: {response}") return response, extract_addresses(response) # Handle restaurant-related queries if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower(): logging.debug("Handling restaurant-related query") response = fetch_yelp_restaurants() logging.debug(f"Restaurant response: {response}") return response, extract_addresses(response) # Handle flight-related queries if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower(): logging.debug("Handling flight-related query") response = fetch_google_flights() logging.debug(f"Flight response: {response}") return response, extract_addresses(response) # Retrieval-based response if retrieval_mode == "VDB": logging.debug("Using VDB retrieval mode") if selected_model == chat_model: logging.debug("Selected model: LM-1") retriever = gpt_retriever context = retriever.get_relevant_documents(message) logging.debug(f"Retrieved context: {context}") prompt = prompt_template.format(context=context, question=message) logging.debug(f"Generated prompt: {prompt}") qa_chain = RetrievalQA.from_chain_type( llm=chat_model, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt_template} ) response = qa_chain({"query": message}) logging.debug(f"LM-1 response: {response}") return response['result'], extract_addresses(response['result']) elif selected_model == chat_model1: logging.debug("Selected model: LM-3") retriever = gpt_retriever context = retriever.get_relevant_documents(message) logging.debug(f"Retrieved context: {context}") prompt = prompt_template.format(context=context, question=message) logging.debug(f"Generated prompt: {prompt}") qa_chain = RetrievalQA.from_chain_type( llm=chat_model1, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt_template} ) response = qa_chain({"query": message}) logging.debug(f"LM-3 response: {response}") return response['result'], extract_addresses(response['result']) elif selected_model == phi_pipe: logging.debug("Selected model: LM-2") retriever = phi_retriever context_documents = retriever.get_relevant_documents(message) context = "\n".join([doc.page_content for doc in context_documents]) logging.debug(f"Retrieved context for LM-2: {context}") # Use the correct template variable prompt = phi_custom_template.format(context=context, question=message) logging.debug(f"Generated LM-2 prompt: {prompt}") response = selected_model(prompt, **{ "max_new_tokens": 400, "return_full_text": True, "temperature": 0.7, "do_sample": True, }) if response: generated_text = response[0]['generated_text'] logging.debug(f"LM-2 Response: {generated_text}") cleaned_response = clean_response(generated_text) return cleaned_response, extract_addresses(cleaned_response) else: logging.error("LM-2 did not return any response.") return "No response generated.", [] elif retrieval_mode == "KGF": logging.debug("Using KGF retrieval mode") response = chain_neo4j.invoke({"question": message}) logging.debug(f"KGF response: {response}") return response, extract_addresses(response) else: logging.error("Invalid retrieval mode selected.") return "Invalid retrieval mode selected.", [] except Exception as e: logging.error(f"Error in generate_answer: {str(e)}") logging.error(traceback.format_exc()) return "Sorry, I encountered an error while processing your request.", [] def add_message(history, message): history.append((message, None)) return history, gr.Textbox(value="", interactive=True, show_label=False) def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def extract_addresses(response): if not isinstance(response, str): response = str(response) address_patterns = [ r'([A-Z].*,\sBirmingham,\sAL\s\d{5})', r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})', r'([A-Z].*,\sAL\s\d{5})', r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})', r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})', r'(\d{2}.*\sStreets)', r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})', r'([a-zA-Z]\s Birmingham)', r'([a-zA-Z].*,\sBirmingham,\sAL)', r'(.*),(Birmingham, AL,USA)$' r'(^Birmingham,AL$)', r'((.*)(Stadium|Field),.*,\sAL$)', r'((.*)(Stadium|Field),.*,\sFL$)', r'((.*)(Stadium|Field),.*,\sMS$)', r'((.*)(Stadium|Field),.*,\sAR$)', r'((.*)(Stadium|Field),.*,\sKY$)', r'((.*)(Stadium|Field),.*,\sTN$)', r'((.*)(Stadium|Field),.*,\sLA$)', r'((.*)(Stadium|Field),.*,\sFL$)' ] addresses = [] for pattern in address_patterns: addresses.extend(re.findall(pattern, response)) return addresses all_addresses = [] def generate_map(location_names): global all_addresses all_addresses.extend(location_names) api_key = os.environ['GOOGLEMAPS_API_KEY'] gmaps = GoogleMapsClient(key=api_key) m = folium.Map(location=[33.5175, -86.809444], zoom_start=12) for location_name in all_addresses: geocode_result = gmaps.geocode(location_name) if geocode_result: location = geocode_result[0]['geometry']['location'] folium.Marker( [location['lat'], location['lng']], tooltip=f"{geocode_result[0]['formatted_address']}" ).add_to(m) map_html = m._repr_html_() return map_html from diffusers import DiffusionPipeline import torch def fetch_local_news(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}' response = requests.get(url) if response.status_code == 200: results = response.json().get("news_results", []) news_html = """
{snippet}
Failed to fetch local news
" import numpy as np import torch from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor model_id = 'openai/whisper-large-v3' device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) processor = AutoProcessor.from_pretrained(model_id) pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) base_audio_drive = "/data/audio" #Normal Code with sample rate is 44100 Hz def transcribe_function(stream, new_chunk): try: sr, y = new_chunk[0], new_chunk[1] except TypeError: print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") return stream, "", None y = y.astype(np.float32) / np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) full_text = result.get("text","") return stream, full_text, result def update_map_with_response(history): if not history: return "" response = history[-1][1] addresses = extract_addresses(response) return generate_map(addresses) def clear_textbox(): return "" def show_map_if_details(history, choice): if choice in ["Details", "Conversational"]: return gr.update(visible=True), update_map_with_response(history) else: return gr.update(visible(False), "") def generate_audio_elevenlabs(text): XI_API_KEY = os.environ['ELEVENLABS_API'] VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" headers = { "Accept": "application/json", "xi-api-key": XI_API_KEY } data = { "text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": { "stability": 1.0, "similarity_boost": 0.0, "style": 0.60, "use_speaker_boost": False } } response = requests.post(tts_url, headers=headers, json=data, stream=True) if response.ok: audio_segments = [] with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) audio_segments.append(chunk) temp_audio_path = f.name # Combine all audio chunks into a single file combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3") combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3") combined_audio.export(combined_audio_path, format="mp3") logging.debug(f"Audio saved to {combined_audio_path}") return combined_audio_path else: logging.error(f"Error generating audio: {response.text}") return None # chunking audio and then Process import concurrent.futures import tempfile import os import numpy as np import logging from queue import Queue from threading import Thread from scipy.io.wavfile import write as write_wav from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer from transformers import AutoTokenizer # Ensure your device is set to CUDA device = "cuda:0" if torch.cuda.is_available() else "cpu" repo_id = "parler-tts/parler-tts-mini-v1" def generate_audio_parler_tts(text): description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." chunk_size_in_s = 0.5 # Initialize the tokenizer and model parler_tokenizer = AutoTokenizer.from_pretrained(repo_id) parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) sampling_rate = parler_model.audio_encoder.config.sampling_rate frame_rate = parler_model.audio_encoder.config.frame_rate def generate(text, description, play_steps_in_s=0.5): play_steps = int(frame_rate * play_steps_in_s) streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps) inputs = parler_tokenizer(description, return_tensors="pt").to(device) prompt = parler_tokenizer(text, return_tensors="pt").to(device) generation_kwargs = dict( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, streamer=streamer, do_sample=True, temperature=1.0, min_new_tokens=10, ) thread = Thread(target=parler_model.generate, kwargs=generation_kwargs) thread.start() for new_audio in streamer: if new_audio.shape[0] == 0: break # Save or process each audio chunk as it is generated yield sampling_rate, new_audio audio_segments = [] for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s): audio_segments.append(audio_chunk) temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav") write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32)) logging.debug(f"Saved chunk to {temp_audio_path}") # Combine all the audio chunks into one audio file combined_audio = np.concatenate(audio_segments) combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav") write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32)) logging.debug(f"Combined audio saved to {combined_audio_path}") return combined_audio_path def fetch_local_events(): api_key = os.environ['SERP_API'] url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}' response = requests.get(url) if response.status_code == 200: events_results = response.json().get("events_results", []) events_html = """Title | Date and Time | Location |
---|---|---|
{title} | {date} | {location} |
Failed to fetch local events
" def get_weather_icon(condition): condition_map = { "Clear": "c01d", "Partly Cloudy": "c02d", "Cloudy": "c03d", "Overcast": "c04d", "Mist": "a01d", "Patchy rain possible": "r01d", "Light rain": "r02d", "Moderate rain": "r03d", "Heavy rain": "r04d", "Snow": "s01d", "Thunderstorm": "t01d", "Fog": "a05d", } return condition_map.get(condition, "c04d") def fetch_local_weather(): try: api_key = os.environ['WEATHER_API'] url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}' response = requests.get(url) response.raise_for_status() jsonData = response.json() current_conditions = jsonData.get("currentConditions", {}) temp_celsius = current_conditions.get("temp", "N/A") if temp_celsius != "N/A": temp_fahrenheit = int((temp_celsius * 9/5) + 32) else: temp_fahrenheit = "N/A" condition = current_conditions.get("conditions", "N/A") humidity = current_conditions.get("humidity", "N/A") weather_html = f"""Temperature: {temp_fahrenheit}°F
Condition: {condition}
Humidity: {humidity}%
Failed to fetch local weather: {e}
" def handle_retrieval_mode_change(choice): if choice == "KGF": return gr.update(interactive=False), gr.update(interactive=False) else: return gr.update(interactive=True), gr.update(interactive=True) def handle_model_choice_change(selected_model): if selected_model == "LM-2": # Disable retrieval mode and select style when LM-2 is selected return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) elif selected_model == "LM-1": # Enable retrieval mode and select style for LM-1 return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) else: # Default case: allow interaction return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) import gradio as gr import torch from diffusers import FluxPipeline import os # Set PYTORCH_CUDA_ALLOC_CONF to handle memory fragmentation os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' # Check if CUDA (GPU) is available, otherwise fallback to CPU device = "cuda:0" if torch.cuda.is_available() else "cpu" # Function to initialize Flux bot model with GPU memory management def initialize_flux_bot(): try: torch.cuda.empty_cache() # Clear GPU memory cache pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) # Use FP16 pipe.to(device) # Move the model to the correct device (GPU/CPU) except torch.cuda.OutOfMemoryError: print("CUDA out of memory, switching to CPU.") pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float32) # Use FP32 for CPU pipe.to("cpu") return pipe # Function to generate image using Flux bot on the specified device def generate_image_flux(prompt): pipe = initialize_flux_bot() image = pipe( prompt, guidance_scale=0.0, num_inference_steps=2, # Reduced steps to save memory max_sequence_length=128, # Reduced sequence length to save memory generator=torch.Generator(device).manual_seed(0) ).images[0] return image # Hardcoded prompts for the images hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann" hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann" hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann" # Function to update images def update_images(): image_1 = generate_image_flux(hardcoded_prompt_1) image_2 = generate_image_flux(hardcoded_prompt_2) image_3 = generate_image_flux(hardcoded_prompt_3) return image_1, image_2, image_3 def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet): return f""" {name} - Link: {link} - Location: {location} - Contact No: {phone} - Rating: {rating} stars ({reviews} reviews) - Snippet: {snippet} """ def fetch_yelp_restaurants(): # Introductory prompt for restaurants intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:" params = { "engine": "yelp", "find_desc": "Restaurant", "find_loc": "Birmingham, AL, USA", "api_key": os.getenv("SERP_API") } search = GoogleSearch(params) results = search.get_dict() organic_results = results.get("organic_results", []) response_text = f"{intro_prompt}\n" for result in organic_results[:5]: # Limiting to top 5 restaurants name = result.get("title", "No name") rating = result.get("rating", "No rating") reviews = result.get("reviews", "No reviews") phone = result.get("phone", "Not Available") snippet = result.get("snippet", "Not Available") location = f"{name}, Birmingham, AL,USA" link = result.get("link", "#") response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet) return response_text def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities): return f""" {name} - Link: {link} - Location: {location} - Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate}) - Check-in Time: {check_in_time} - Check-out Time: {check_out_time} - Amenities: {amenities} - Description: {description} """ def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2): # Introductory prompt for hotels intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:" params = { "engine": "google_hotels", "q": query, "check_in_date": check_in, "check_out_date": check_out, "adults": str(adults), "currency": "USD", "gl": "us", "hl": "en", "api_key": os.getenv("SERP_API") } search = GoogleSearch(params) results = search.get_dict() hotel_results = results.get("properties", []) hotel_info = f"{intro_prompt}\n" for hotel in hotel_results[:5]: # Limiting to top 5 hotels name = hotel.get('name', 'No name') description = hotel.get('description', 'No description') link = hotel.get('link', '#') check_in_time = hotel.get('check_in_time', 'N/A') check_out_time = hotel.get('check_out_time', 'N/A') rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A') before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A') total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A') amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available" location = f"{name}, Birmingham, AL,USA" hotel_info += format_hotel_info( name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities ) return hotel_info def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane): return f""" Flight {flight_number} - Departure: {departure_airport} at {departure_time} - Arrival: {arrival_airport} at {arrival_time} - Duration: {duration} minutes - Airplane: {airplane} """ def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"): # Introductory prompt for flights intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:" params = { "engine": "google_flights", "departure_id": departure_id, "arrival_id": arrival_id, "outbound_date": outbound_date, "return_date": return_date, "currency": "USD", "hl": "en", "api_key": os.getenv("SERP_API") } search = GoogleSearch(params) results = search.get_dict() # Extract flight details from the results best_flights = results.get('best_flights', []) flight_info = f"{intro_prompt}\n" # Process each flight in the best_flights list for i, flight in enumerate(best_flights, start=1): for segment in flight.get('flights', []): departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport') departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time') arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport') arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time') duration = segment.get('duration', 'Unknown Duration') airplane = segment.get('airplane', 'Unknown Airplane') # Format the flight segment details flight_info += format_flight_info( flight_number=i, departure_airport=departure_airport, departure_time=departure_time, arrival_airport=arrival_airport, arrival_time=arrival_time, duration=duration, airplane=airplane ) return flight_info examples = [ [ "What are the concerts in Birmingham?", ], [ "what are some of the upcoming matches of crimson tide?", ], [ "where from i will get a Hamburger?", ], [ "What are some of the hotels at birmingham?", ], [ "how can i connect the alexa to the radio?" ], [ "What are some of the good clubs at birmingham?" ], [ "How do I call the radio station?", ], [ "What’s the spread?" ], [ "What time is Crimson Tide Rewind?" ], [ "What time is Alabama kick-off?" ], [ "who are some of the popular players of crimson tide?" ] ] # Function to insert the prompt into the textbox when clicked def insert_prompt(current_text, prompt): return prompt[0] if prompt else current_text with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo: with gr.Row(): with gr.Column(): state = gr.State() chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False) choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational") retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB") model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2", "LM-3"], value="LM-1") # Link the dropdown change to handle_model_choice_change model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice]) gr.Markdown("