Pijush2023 commited on
Commit
f0b81ab
·
verified ·
1 Parent(s): 1d5b5b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -682
app.py CHANGED
@@ -1,14 +1,19 @@
1
- from TTS.api import TTS
2
  import gradio as gr
3
- import os
4
  import requests
 
 
 
 
5
  import tempfile
 
6
  import concurrent.futures
7
  import torch
8
- from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
9
  from PIL import Image
10
  from datetime import datetime
 
11
  from googlemaps import Client as GoogleMapsClient
 
 
12
  from langchain_openai import OpenAIEmbeddings, ChatOpenAI
13
  from langchain_pinecone import PineconeVectorStore
14
  from langchain.prompts import PromptTemplate
@@ -16,6 +21,7 @@ from langchain.chains import RetrievalQA
16
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
17
  from langchain.agents import Tool, initialize_agent
18
  from huggingface_hub import login
 
19
  from parler_tts import ParlerTTSForConditionalGeneration
20
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
21
  from scipy.io.wavfile import write as write_wav
@@ -24,7 +30,6 @@ from string import punctuation
24
  import librosa
25
  from pathlib import Path
26
  import torchaudio
27
- import logging
28
 
29
  # Check if the token is already set in the environment variables
30
  hf_token = os.getenv("HF_TOKEN")
@@ -258,8 +263,6 @@ def bot(history, choice, tts_choice):
258
  audio_future = executor.submit(generate_audio_parler_tts, response)
259
  elif tts_choice == "MARS5":
260
  audio_future = executor.submit(generate_audio_mars5, response)
261
- elif tts_choice == "XTTS":
262
- audio_future = executor.submit(generate_audio_xtts, response)
263
 
264
 
265
  for character in response:
@@ -581,18 +584,6 @@ def generate_audio_mars5(text):
581
  logging.debug(f"Audio saved to {combined_audio_path}")
582
  return combined_audio_path
583
 
584
- # Initialize XTTS model
585
- xtts_model = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=True)
586
-
587
- def generate_audio_xtts(text):
588
- temp_audio_path = os.path.join(tempfile.gettempdir(), "xtts_audio.wav")
589
- xtts_model.tts_to_file(
590
- text=text,
591
- file_path=temp_audio_path,
592
- language="en"
593
- )
594
- return temp_audio_path
595
-
596
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
597
  pipe.to(device)
598
 
@@ -626,7 +617,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
626
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
627
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
628
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
629
- tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5", "XTTS"], value="Eleven Labs")
630
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
631
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
632
  chatbot.like(print_like_dislike, None, None)
@@ -666,669 +657,6 @@ demo.launch(share=True)
666
 
667
 
668
 
669
-
670
-
671
-
672
-
673
- # import gradio as gr
674
- # import requests
675
- # import os
676
- # import time
677
- # import re
678
- # import logging
679
- # import tempfile
680
- # import folium
681
- # import concurrent.futures
682
- # import torch
683
- # from PIL import Image
684
- # from datetime import datetime
685
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
686
- # from googlemaps import Client as GoogleMapsClient
687
- # from gtts import gTTS
688
- # from diffusers import StableDiffusionPipeline
689
- # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
690
- # from langchain_pinecone import PineconeVectorStore
691
- # from langchain.prompts import PromptTemplate
692
- # from langchain.chains import RetrievalQA
693
- # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
694
- # from langchain.agents import Tool, initialize_agent
695
- # from huggingface_hub import login
696
- # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
697
- # from parler_tts import ParlerTTSForConditionalGeneration
698
- # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
699
- # from scipy.io.wavfile import write as write_wav
700
- # from pydub import AudioSegment
701
- # from string import punctuation
702
- # import librosa
703
- # from pathlib import Path
704
- # import torchaudio
705
-
706
- # # Check if the token is already set in the environment variables
707
- # hf_token = os.getenv("HF_TOKEN")
708
- # if hf_token is None:
709
- # print("Please set your Hugging Face token in the environment variables.")
710
- # else:
711
- # login(token=hf_token)
712
-
713
- # logging.basicConfig(level=logging.DEBUG)
714
-
715
- # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
716
-
717
- # from pinecone import Pinecone
718
- # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
719
-
720
- # index_name = "birmingham-dataset"
721
- # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
722
- # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
723
-
724
- # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
725
-
726
- # conversational_memory = ConversationBufferWindowMemory(
727
- # memory_key='chat_history',
728
- # k=10,
729
- # return_messages=True
730
- # )
731
-
732
- # def get_current_time_and_date():
733
- # now = datetime.now()
734
- # return now.strftime("%Y-%m-%d %H:%M:%S")
735
-
736
- # current_time_and_date = get_current_time_and_date()
737
-
738
- # def fetch_local_events():
739
- # api_key = os.environ['SERP_API']
740
- # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
741
- # response = requests.get(url)
742
- # if response.status_code == 200:
743
- # events_results = response.json().get("events_results", [])
744
- # events_html = """
745
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
746
- # <style>
747
- # .event-item {
748
- # font-family: 'Verdana', sans-serif;
749
- # color: #333;
750
- # margin-bottom: 15px;
751
- # padding: 10px;
752
- # font-weight: bold;
753
- # }
754
- # .event-item a {
755
- # color: #1E90FF;
756
- # text-decoration: none;
757
- # }
758
- # .event-item a:hover {
759
- # text-decoration: underline;
760
- # }
761
- # </style>
762
- # """
763
- # for index, event in enumerate(events_results):
764
- # title = event.get("title", "No title")
765
- # date = event.get("date", "No date")
766
- # location = event.get("address", "No location")
767
- # link = event.get("link", "#")
768
- # events_html += f"""
769
- # <div class="event-item">
770
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
771
- # <p>Date: {date}<br>Location: {location}</p>
772
- # </div>
773
- # """
774
- # return events_html
775
- # else:
776
- # return "<p>Failed to fetch local events</p>"
777
-
778
- # def fetch_local_weather():
779
- # try:
780
- # api_key = os.environ['WEATHER_API']
781
- # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
782
- # response = requests.get(url)
783
- # response.raise_for_status()
784
- # jsonData = response.json()
785
-
786
- # current_conditions = jsonData.get("currentConditions", {})
787
- # temp_celsius = current_conditions.get("temp", "N/A")
788
-
789
- # if temp_celsius != "N/A":
790
- # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
791
- # else:
792
- # temp_fahrenheit = "N/A"
793
-
794
- # condition = current_conditions.get("conditions", "N/A")
795
- # humidity = current_conditions.get("humidity", "N/A")
796
-
797
- # weather_html = f"""
798
- # <div class="weather-theme">
799
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
800
- # <div class="weather-content">
801
- # <div class="weather-icon">
802
- # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
803
- # </div>
804
- # <div class="weather-details">
805
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
806
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
807
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
808
- # </div>
809
- # </div>
810
- # </div>
811
- # <style>
812
- # .weather-theme {{
813
- # animation: backgroundAnimation 10s infinite alternate;
814
- # border-radius: 10px;
815
- # padding: 10px;
816
- # margin-bottom: 15px;
817
- # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
818
- # background-size: 400% 400%;
819
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
820
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
821
- # }}
822
- # .weather-theme:hover {{
823
- # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
824
- # background-position: 100% 100%;
825
- # }}
826
- # @keyframes backgroundAnimation {{
827
- # 0% {{ background-position: 0% 50%; }}
828
- # 100% {{ background-position: 100% 50%; }}
829
- # }}
830
- # .weather-content {{
831
- # display: flex;
832
- # align-items: center;
833
- # }}
834
- # .weather-icon {{
835
- # flex: 1;
836
- # }}
837
- # .weather-details {{
838
- # flex: 3;
839
- # }}
840
- # </style>
841
- # """
842
- # return weather_html
843
- # except requests.exceptions.RequestException as e:
844
- # return f"<p>Failed to fetch local weather: {e}</p>"
845
-
846
- # def get_weather_icon(condition):
847
- # condition_map = {
848
- # "Clear": "c01d",
849
- # "Partly Cloudy": "c02d",
850
- # "Cloudy": "c03d",
851
- # "Overcast": "c04d",
852
- # "Mist": "a01d",
853
- # "Patchy rain possible": "r01d",
854
- # "Light rain": "r02d",
855
- # "Moderate rain": "r03d",
856
- # "Heavy rain": "r04d",
857
- # "Snow": "s01d",
858
- # "Thunderstorm": "t01d",
859
- # "Fog": "a05d",
860
- # }
861
- # return condition_map.get(condition, "c04d")
862
-
863
- # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
864
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
865
- # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
866
- # event type and description. Always say "It was my pleasure!" at the end of the answer.
867
- # {context}
868
- # Question: {question}
869
- # Helpful Answer:"""
870
-
871
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
872
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
873
- # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
874
- # {context}
875
- # Question: {question}
876
- # Helpful Answer:"""
877
-
878
- # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
879
- # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
880
-
881
- # def build_qa_chain(prompt_template):
882
- # qa_chain = RetrievalQA.from_chain_type(
883
- # llm=chat_model,
884
- # chain_type="stuff",
885
- # retriever=retriever,
886
- # chain_type_kwargs={"prompt": prompt_template}
887
- # )
888
- # tools = [
889
- # Tool(
890
- # name='Knowledge Base',
891
- # func=qa_chain,
892
- # description='Use this tool when answering general knowledge queries to get more information about the topic'
893
- # )
894
- # ]
895
- # return qa_chain, tools
896
-
897
- # def initialize_agent_with_prompt(prompt_template):
898
- # qa_chain, tools = build_qa_chain(prompt_template)
899
- # agent = initialize_agent(
900
- # agent='chat-conversational-react-description',
901
- # tools=tools,
902
- # llm=chat_model,
903
- # verbose=False,
904
- # max_iteration=5,
905
- # early_stopping_method='generate',
906
- # memory=conversational_memory
907
- # )
908
- # return agent
909
-
910
- # def generate_answer(message, choice):
911
- # logging.debug(f"generate_answer called with prompt_choice: {choice}")
912
-
913
- # if choice == "Details":
914
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
915
- # elif choice == "Conversational":
916
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
917
- # else:
918
- # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
919
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
920
- # response = agent(message)
921
-
922
- # addresses = extract_addresses(response['output'])
923
- # return response['output'], addresses
924
-
925
- # def bot(history, choice, tts_choice):
926
- # if not history:
927
- # return history
928
- # response, addresses = generate_answer(history[-1][0], choice)
929
- # history[-1][1] = ""
930
-
931
- # with concurrent.futures.ThreadPoolExecutor() as executor:
932
- # if tts_choice == "Eleven Labs":
933
- # audio_future = executor.submit(generate_audio_elevenlabs, response)
934
- # elif tts_choice == "Parler-TTS":
935
- # audio_future = executor.submit(generate_audio_parler_tts, response)
936
- # elif tts_choice == "MARS5":
937
- # audio_future = executor.submit(generate_audio_mars5, response)
938
-
939
-
940
- # for character in response:
941
- # history[-1][1] += character
942
- # time.sleep(0.05)
943
- # yield history, None
944
-
945
- # audio_path = audio_future.result()
946
- # yield history, audio_path
947
-
948
- # def add_message(history, message):
949
- # history.append((message, None))
950
- # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
951
-
952
- # def print_like_dislike(x: gr.LikeData):
953
- # print(x.index, x.value, x.liked)
954
-
955
- # def extract_addresses(response):
956
- # if not isinstance(response, str):
957
- # response = str(response)
958
- # address_patterns = [
959
- # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
960
- # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
961
- # r'([A-Z].*,\sAL\s\d{5})',
962
- # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
963
- # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
964
- # r'(\d{2}.*\sStreets)',
965
- # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
966
- # r'([a-zA-Z]\s Birmingham)'
967
- # ]
968
- # addresses = []
969
- # for pattern in address_patterns:
970
- # addresses.extend(re.findall(pattern, response))
971
- # return addresses
972
-
973
- # all_addresses = []
974
-
975
- # def generate_map(location_names):
976
- # global all_addresses
977
- # all_addresses.extend(location_names)
978
-
979
- # api_key = os.environ['GOOGLEMAPS_API_KEY']
980
- # gmaps = GoogleMapsClient(key=api_key)
981
-
982
- # m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
983
-
984
- # for location_name in all_addresses:
985
- # geocode_result = gmaps.geocode(location_name)
986
- # if geocode_result:
987
- # location = geocode_result[0]['geometry']['location']
988
- # folium.Marker(
989
- # [location['lat'], 'lng'],
990
- # tooltip=f"{geocode_result[0]['formatted_address']}"
991
- # ).add_to(m)
992
-
993
- # map_html = m._repr_html_()
994
- # return map_html
995
-
996
- # def fetch_local_news():
997
- # api_key = os.environ['SERP_API']
998
- # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
999
- # response = requests.get(url)
1000
- # if response.status_code == 200:
1001
- # results = response.json().get("news_results", [])
1002
- # news_html = """
1003
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
1004
- # <style>
1005
- # .news-item {
1006
- # font-family: 'Verdana', sans-serif;
1007
- # color: #333;
1008
- # background-color: #f0f8ff;
1009
- # margin-bottom: 15px;
1010
- # padding: 10px;
1011
- # border-radius: 5px;
1012
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
1013
- # font-weight: bold;
1014
- # }
1015
- # .news-item:hover {
1016
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
1017
- # background-color: #e6f7ff;
1018
- # }
1019
- # .news-item a {
1020
- # color: #1E90FF;
1021
- # text-decoration: none;
1022
- # font-weight: bold;
1023
- # }
1024
- # .news-item a:hover {
1025
- # text-decoration: underline;
1026
- # }
1027
- # .news-preview {
1028
- # position: absolute;
1029
- # display: none;
1030
- # border: 1px solid #ccc;
1031
- # border-radius: 5px;
1032
- # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
1033
- # background-color: white;
1034
- # z-index: 1000;
1035
- # max-width: 300px;
1036
- # padding: 10px;
1037
- # font-family: 'Verdana', sans-serif;
1038
- # color: #333;
1039
- # }
1040
- # </style>
1041
- # <script>
1042
- # function showPreview(event, previewContent) {
1043
- # var previewBox = document.getElementById('news-preview');
1044
- # previewBox.innerHTML = previewContent;
1045
- # previewBox.style.left = event.pageX + 'px';
1046
- # previewBox.style.top = event.pageY + 'px';
1047
- # previewBox.style.display = 'block';
1048
- # }
1049
- # function hidePreview() {
1050
- # var previewBox = document.getElementById('news-preview');
1051
- # previewBox.style.display = 'none';
1052
- # }
1053
- # </script>
1054
- # <div id="news-preview" class="news-preview"></div>
1055
- # """
1056
- # for index, result in enumerate(results[:7]):
1057
- # title = result.get("title", "No title")
1058
- # link = result.get("link", "#")
1059
- # snippet = result.get("snippet", "")
1060
- # news_html += f"""
1061
- # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
1062
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
1063
- # <p>{snippet}</p>
1064
- # </div>
1065
- # """
1066
- # return news_html
1067
- # else:
1068
- # return "<p>Failed to fetch local news</p>"
1069
-
1070
- # import numpy as np
1071
- # import torch
1072
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
1073
-
1074
- # model_id = 'openai/whisper-large-v3'
1075
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
1076
- # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
1077
- # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
1078
- # processor = AutoProcessor.from_pretrained(model_id)
1079
-
1080
- # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
1081
-
1082
- # base_audio_drive = "/data/audio"
1083
-
1084
- # def transcribe_function(stream, new_chunk):
1085
- # try:
1086
- # sr, y = new_chunk[0], new_chunk[1]
1087
- # except TypeError:
1088
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
1089
- # return stream, "", None
1090
-
1091
- # y = y.astype(np.float32) / np.max(np.abs(y))
1092
-
1093
- # if stream is not None:
1094
- # stream = np.concatenate([stream, y])
1095
- # else:
1096
- # stream = y
1097
-
1098
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
1099
-
1100
- # full_text = result.get("text", "")
1101
-
1102
- # return stream, full_text, result
1103
-
1104
- # def update_map_with_response(history):
1105
- # if not history:
1106
- # return ""
1107
- # response = history[-1][1]
1108
- # addresses = extract_addresses(response)
1109
- # return generate_map(addresses)
1110
-
1111
- # def clear_textbox():
1112
- # return ""
1113
-
1114
- # def show_map_if_details(history,choice):
1115
- # if choice in ["Details", "Conversational"]:
1116
- # return gr.update(visible=True), update_map_with_response(history)
1117
- # else:
1118
- # return gr.update(visible=False), ""
1119
-
1120
- # def generate_audio_elevenlabs(text):
1121
- # XI_API_KEY = os.environ['ELEVENLABS_API']
1122
- # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
1123
- # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
1124
- # headers = {
1125
- # "Accept": "application/json",
1126
- # "xi-api-key": XI_API_KEY
1127
- # }
1128
- # data = {
1129
- # "text": str(text),
1130
- # "model_id": "eleven_multilingual_v2",
1131
- # "voice_settings": {
1132
- # "stability": 1.0,
1133
- # "similarity_boost": 0.0,
1134
- # "style": 0.60,
1135
- # "use_speaker_boost": False
1136
- # }
1137
- # }
1138
- # response = requests.post(tts_url, headers=headers, json=data, stream=True)
1139
- # if response.ok:
1140
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
1141
- # for chunk in response.iter_content(chunk_size=1024):
1142
- # f.write(chunk)
1143
- # temp_audio_path = f.name
1144
- # logging.debug(f"Audio saved to {temp_audio_path}")
1145
- # return temp_audio_path
1146
- # else:
1147
- # logging.error(f"Error generating audio: {response.text}")
1148
- # return None
1149
-
1150
- # repo_id = "parler-tts/parler-tts-mini-expresso"
1151
-
1152
- # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
1153
- # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
1154
- # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
1155
-
1156
- # SAMPLE_RATE = parler_feature_extractor.sampling_rate
1157
- # SEED = 42
1158
-
1159
- # def preprocess(text):
1160
- # number_normalizer = EnglishNumberNormalizer()
1161
- # text = number_normalizer(text).strip()
1162
- # if text[-1] not in punctuation:
1163
- # text = f"{text}."
1164
-
1165
- # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
1166
-
1167
- # def separate_abb(chunk):
1168
- # chunk = chunk.replace(".", "")
1169
- # return " ".join(chunk)
1170
-
1171
- # abbreviations = re.findall(abbreviations_pattern, text)
1172
- # for abv in abbreviations:
1173
- # if abv in text:
1174
- # text = text.replace(abv, separate_abb(abv))
1175
- # return text
1176
-
1177
- # def chunk_text(text, max_length=250):
1178
- # words = text.split()
1179
- # chunks = []
1180
- # current_chunk = []
1181
- # current_length = 0
1182
-
1183
- # for word in words:
1184
- # if current_length + len(word) + 1 <= max_length:
1185
- # current_chunk.append(word)
1186
- # current_length += len(word) + 1
1187
- # else:
1188
- # chunks.append(' '.join(current_chunk))
1189
- # current_chunk = [word]
1190
- # current_length = len(word) + 1
1191
-
1192
- # if current_chunk:
1193
- # chunks.append(' '.join(current_chunk))
1194
-
1195
- # return chunks
1196
-
1197
- # def generate_audio_parler_tts(text):
1198
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
1199
- # chunks = chunk_text(preprocess(text))
1200
- # audio_segments = []
1201
-
1202
- # for chunk in chunks:
1203
- # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
1204
- # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
1205
-
1206
- # set_seed(SEED)
1207
- # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
1208
- # audio_arr = generation.cpu().numpy().squeeze()
1209
-
1210
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
1211
- # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
1212
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1213
-
1214
- # combined_audio = sum(audio_segments)
1215
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
1216
- # combined_audio.export(combined_audio_path, format="wav")
1217
-
1218
- # logging.debug(f"Audio saved to {combined_audio_path}")
1219
- # return combined_audio_path
1220
-
1221
- # # Load the MARS5 model
1222
- # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
1223
-
1224
- # def generate_audio_mars5(text):
1225
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
1226
- # kwargs_dict = {
1227
- # 'temperature': 0.2,
1228
- # 'top_k': -1,
1229
- # 'top_p': 0.2,
1230
- # 'typical_p': 1.0,
1231
- # 'freq_penalty': 2.6,
1232
- # 'presence_penalty': 0.4,
1233
- # 'rep_penalty_window': 100,
1234
- # 'max_prompt_phones': 360,
1235
- # 'deep_clone': True,
1236
- # 'nar_guidance_w': 3
1237
- # }
1238
-
1239
- # chunks = chunk_text(preprocess(text))
1240
- # audio_segments = []
1241
-
1242
- # for chunk in chunks:
1243
- # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
1244
- # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
1245
- # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
1246
-
1247
-
1248
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
1249
- # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
1250
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1251
-
1252
- # combined_audio = sum(audio_segments)
1253
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
1254
- # combined_audio.export(combined_audio_path, format="wav")
1255
-
1256
- # logging.debug(f"Audio saved to {combined_audio_path}")
1257
- # return combined_audio_path
1258
-
1259
- # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
1260
- # pipe.to(device)
1261
-
1262
- # def generate_image(prompt):
1263
- # with torch.cuda.amp.autocast():
1264
- # image = pipe(
1265
- # prompt,
1266
- # num_inference_steps=28,
1267
- # guidance_scale=3.0,
1268
- # ).images[0]
1269
- # return image
1270
-
1271
- # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
1272
- # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
1273
- # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
1274
-
1275
- # def update_images():
1276
- # image_1 = generate_image(hardcoded_prompt_1)
1277
- # image_2 = generate_image(hardcoded_prompt_2)
1278
- # image_3 = generate_image(hardcoded_prompt_3)
1279
- # return image_1, image_2, image_3
1280
-
1281
- # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1282
- # with gr.Row():
1283
- # with gr.Column():
1284
- # state = gr.State()
1285
-
1286
- # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1287
- # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1288
-
1289
- # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1290
- # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
1291
- # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
1292
- # tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
1293
- # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
1294
- # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
1295
- # chatbot.like(print_like_dislike, None, None)
1296
- # clear_button = gr.Button("Clear")
1297
- # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
1298
-
1299
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
1300
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
1301
-
1302
- # with gr.Column():
1303
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1304
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
1305
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
1306
-
1307
- # refresh_button = gr.Button("Refresh Images")
1308
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
1309
-
1310
- # demo.queue()
1311
- # demo.launch(share=True)
1312
-
1313
-
1314
-
1315
-
1316
-
1317
-
1318
-
1319
-
1320
-
1321
-
1322
-
1323
-
1324
-
1325
-
1326
-
1327
-
1328
-
1329
-
1330
-
1331
-
1332
 
1333
 
1334
  # import gradio as gr
 
 
1
  import gradio as gr
 
2
  import requests
3
+ import os
4
+ import time
5
+ import re
6
+ import logging
7
  import tempfile
8
+ import folium
9
  import concurrent.futures
10
  import torch
 
11
  from PIL import Image
12
  from datetime import datetime
13
+ from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
  from googlemaps import Client as GoogleMapsClient
15
+ from gtts import gTTS
16
+ from diffusers import StableDiffusionPipeline
17
  from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
  from langchain_pinecone import PineconeVectorStore
19
  from langchain.prompts import PromptTemplate
 
21
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
  from langchain.agents import Tool, initialize_agent
23
  from huggingface_hub import login
24
+ from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
  from parler_tts import ParlerTTSForConditionalGeneration
26
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
  from scipy.io.wavfile import write as write_wav
 
30
  import librosa
31
  from pathlib import Path
32
  import torchaudio
 
33
 
34
  # Check if the token is already set in the environment variables
35
  hf_token = os.getenv("HF_TOKEN")
 
263
  audio_future = executor.submit(generate_audio_parler_tts, response)
264
  elif tts_choice == "MARS5":
265
  audio_future = executor.submit(generate_audio_mars5, response)
 
 
266
 
267
 
268
  for character in response:
 
584
  logging.debug(f"Audio saved to {combined_audio_path}")
585
  return combined_audio_path
586
 
 
 
 
 
 
 
 
 
 
 
 
 
587
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
  pipe.to(device)
589
 
 
617
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
+ tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
  chatbot.like(print_like_dislike, None, None)
 
657
 
658
 
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
 
661
 
662
  # import gradio as gr